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Abstract—Vast improvements in natural language understand-
ing and speech recognition have paved the way for conversational
interaction with computers. While conversational agents have
often been used for short goal-oriented dialog, we know little
about agents for developing computer programs. To explore the
utility of natural language for programming, we conducted a
study (n=45) comparing different input methods to a conversa-
tional programming system we developed. Participants completed
novice and advanced tasks using voice-based, text-based, and
voice-or-text-based systems. We found that users appreciated
aspects of each system (e.g., voice-input efficiency, text-input
precision) and that novice users were more optimistic about
programming using voice-input than advanced users. Our results
show that future conversational programming tools should be
tailored to users’ programming experience and allow users to
choose their preferred input mode. To reduce cognitive load,
future interfaces can incorporate visualizations and possess
custom natural language understanding and speech recognition
models for programming.

Index Terms—conversational programming, conversational AI,
interaction paradigms, voice interfaces, accessibility, education,
natural language processing, human-computer interaction

I. INTRODUCTION AND RELATED WORK

With recent major advances in automatic speech recogni-
tion (ASR) and natural language processing (NLP) [1]–[3],
interacting with technology has become as easy as having a
conversation. Agents now automate simple, few-turn tasks,
like turning on lights, as well as longer, more complex
tasks, such as booking clients’ appointments through conversa-
tion [4]. Conversational technology can increase accessibility
through question-answering (QA), provide alternative input
and output methods, and enable interaction without requiring
reading/writing skills [5]–[7]. This has positive implications to
computer programming as it could lower the barrier to entry
(e.g., with no syntax requirements and efficient, alternative
input methods) [8]–[10].

However, ASR is still not near the level of recognition
humans expect, and can be frustrating for those with non-
traditional accents [11]. Additionally, natural language (NL)
is innately ambiguous, which could produce additional errors
(e.g., is the meaning of “say variable var”, say the value of
variable var or say the words “variable var”?) [12], [13].

As a result, little is known about the suitability of conver-
sational AI as a tool for novice programmers. There has been

some work in single-turn program synthesis [14], [15]; syntax-
or keyword-dependent, voice-based programming [16]–[19];
conversational agents for controlling/developing specific sys-
tems, such as robots [8], [20]–[22]; and for learning lin-
ear tasks, such as sending emails [23]. Optimal interaction
paradigms for NL, multi-turn, conversational systems, on the
other hand, remain largely unstudied.

To understand the needs of multi-turn, conversational pro-
gramming systems, we created a conversational programming
tool, CONVO, to investigate the effectiveness of voice- vs. text-
based interaction and address primary research questions:

RQ1: What is the preferred input modality for a conversa-
tional tool? Would multimodal input be useful?

RQ2: How do input modalities affect cognitive load?
RQ3: How do preferences of novice and advanced program-

mers for conversational programming differ?
Additionally, we investigated the adequacy of current ASR

(i.e., Google Cloud Speech-to-Text API) and constrained NL
for conversational coding. This paper explores conversational
AI design spaces with respect to lowering the barrier to entry
to programming, and presents (1) the system design of a con-
versational programming agent, (2) a formative study (n=45)
examining cognitive load, input modalities, and advanced
and novice programmers’ performance with a conversational
programming agent, CONVO, and (3) design considerations for
future systems based on quantitative and thematic analyses.

II. SYSTEM DESIGN

CONVO is a voice-based system allowing users to develop
computer programs by conversing in natural language with
a conversational agent. For the user study, the system was
designed to support both voice- and text-based conversations,
which enable three main tasks—program creation, program
editing, and system feedback—through natural language. To
illustrate, users might say, “Create a variable” and the system
would reply, “What do you want to call the variable?”, and so
on, until the program is complete (e.g., see Fig. 1). The user
may then ask to execute the program or to go back and edit.
CONVO supports the following actions being added to user
programs: creating, setting and modifying variables; creating
conditionals and loops; saying phrases; playing sounds; and
getting user input (i.e., storing a number or phrase stated by
the end-user). Other example conversations are shown in [24].978-1-7281-6901-9/20/$31.00 ©2020 IEEE



Fig. 1. The advanced stage of the study using the voice-or-text-based system,
which shows both the record button and text box for input.

CONVO consists of four modules: the voice-user interface
(VUI), natural language understanding (NLU) module, dialog
manager (DM), and program manager (PM). The VUI receives
and transcribes voice input into text using Google’s Cloud
Speech-To-Text API [25] (if in a voice mode) and has a text
box input (if in a text mode). The transcribed text is displayed
on screen and sent to the NLU, which is syntactically-
constrained and uses a regex expression-based semantic parser
to determine intent and extract semantic information. The
intent is sent to the DM, which keeps track of the conversation,
system- and user-goals, and agent state; sends program-related
information to the PM; and generates appropriate responses.
Responses are shown on screen and (if in voice mode) voiced
back to users using Google’s Speech Synthesis API [26]. The
PM stores actions users specify for their program using a
special program representation that can be converted to other
formats (e.g., JavaScript, Python). If the user asks to run their
program, the PM executes a Python version of the program.
Users can scroll through the conversation, as shown in Fig. 1.

III. USER STUDY

We conducted a user study to evaluate the effectiveness of
CONVO and to understand the user needs of a conversational
programming environment. We recruited 45 participants, who
were given $20 or $30 Amazon gift cards depending on
whether they self-identified as novice or advanced (as the
length of the study increased if advanced).

Participants interacted with CONVO in three stages: the
practice stage (create a program where CONVO says “hello
world”), novice stage (create a program where CONVO listens
for user input and plays two different animal sounds—e.g. If I
say “cat”, play “meow”) and advanced stage (create a program
where CONVO continuously listens for user input a set number
of times and plays corresponding animal sounds) only for
advanced users. At each stage, participants engaged in video
and in-context tutorials, had access to view documentation

in a sidebar, and interacted with the three input systems to
complete programming goals. Participants could not move
onto the next goal until CONVO programmatically checked
for current-goal completion.

We performed a mixed between- and within-subject test,
where the between-subject conditions were between novice
and advanced participants and the within-subject condition was
input modality type. We introduced slight goal variations and
randomized the order of the systems (voice-input, text-input
and voice-or-text systems) to account for learning effects.

Each participant completed a questionnaire about their de-
mographic and programming background. We recorded par-
ticipants’ time to goal completion, text- and voice-input tran-
scripts, number of times they asked for help, and the number of
resets of the goal (e.g., when they got stuck). We also recorded
5-point Likert-scale preferences about usability, satisfaction,
and efficiency (as shown in Fig 4) and comparisons of the three
systems, as well as responses to free-form questions about
likes/dislikes, features they wished to add, questions they had
about CONVO, and challenges they ran into.

We performed quantitative and qualitative analyses of the
data, using analysis of variance (ANOVA) for between-
subjects analyses, repeated measures ANOVA for within-
subjects analyses1, and an inductive approach [27] (open
coding) for free-form responses. We identified fourteen design
themes2, with the most common shown in Fig. 2 and 3.

Fig. 2. Total number of occurrences for the top seven themes from advanced
user responses and top seven from novice user responses. Novice responses
emphasized transparency over efficiency. Note how the colors represent which
user group(s) the theme came from (e.g., pink represents a top theme from
novice users, dark blue is from both novice and advanced users).

IV. RESULTS AND DESIGN RECOMMENDATIONS

Through the quantitative and qualitative analyses, we iden-
tified six main design recommendations for future conversa-
tional programming systems.

Tailor to programming experience and task (RQ 3).
Our results suggest that conversational programming systems
should be tailored to their audiences due to differences in
user preferences and abilities. We found that novice users
generally found voice-input useful and enjoyable, whereas
advanced users tended to view it less so, as shown in Fig. 4 and
5. Furthermore, although there was no significant difference

1See appendix [24] for more detail about the quantitative analyses.
2See appendix [24] for details about the design themes.



Fig. 3. Total number of occurrences for the top five themes from each system
survey. The voice-input system responses emphasized efficiency; text-input,
a need to improve efficiency; and voice-or-text, accessibility. Note how the
bars’ colors represent which input system(s) the theme came from (e.g., pink
represents text-input system, and green represents voice-input and voice-or-
text systems).

between the overall number of voice- and text-inputs, in
the advanced stage users tended to type rather than speak
(p=0.003). Advanced users also perceived voice-or-text to be
more difficult than text (p=0.02), but there was no significant
difference for novice users. Thus, for an advanced audience,
it may be more important to have a text-input option than for
a novice audience, and for an introductory audience, a voice-
input system may be more useful than for an advanced one.

Fig. 4. Novice responses to Likert scale questions. Novices generally found
voice useful and enjoyable. Refer to Section V for further discussion.

We also found that some advanced users found NL program-
ming cumbersome, likely because they were used to syntax-
restricted programming languages (e.g., “It also seems quite
inefficient to figure out the right way to express a statement
in actual words that otherwise can be typed in a programming
language using very specialized characters.”), whereas novice
users tended to praise the naturalness of the language (e.g.,
“I liked the simplicity of using the normal talk, as in not
coding necessarily”). This is further reflected in how “improve
efficiency” was found in advanced users’ top seven themes, but
not novice users’ (see Fig. 2). Thus, NL may be a better fit
for an educational, introductory tool than an advanced tool.

Fig. 5. Advanced user responses to Likert scale questions. Advanced user
responses tended to be less favorable towards voice than novice responses.

Design a flexible, accessible system (RQ 1). Our re-
sults suggest conversational programming systems should be
accessible through both voice- and text-input. Participants
found value in both modalities, often citing voice as efficient
(see Fig. 3) and text as accurate. Many participants had
comments similar to, “I liked being able to use the voice
for longer commands, and the text for shorter commands
or misunderstood commands”. This was supported by the
significant difference in number of characters (p=0.004) and
words (p=0.003) per voice utterance over text utterance (i.e.,
longer voice utterances). Furthermore, when using the voice-
or-text system, participants used both voice and text input, and
there was no statistical evidence for a difference in how many
times participants spoke versus typed.

From an accessibility standpoint, it makes sense to provide
both input options, and allow each of them to stand alone
(such that the system is completely accessible by voice-only
and text-only). With current technologies, however, this may
be difficult to achieve. The Google Cloud Speech-to-Text [25]
ASR system we used—which is often recognized as the gold
standard [28], [29]—did not seem sufficient for programming.
Many participants commented on this (e.g., “Sometimes it had
problems understanding my speech, so I resorted to typing
things.”, “It seems like if speech recognition worked well,
it would be a better choice, but having this [text option] is
useful”) and we found that the most common theme was to
improve speech recognition. Thus, until speech recognition
systems improve, it may be infeasible to have a standalone
voice-input system.

Design a transparent system (RQ 3). Many participants
described how they would appreciate being able to ask the
system how it works. Some questions included:

• “What kind of nueral [sic] network do you run on?”
• “How do you understand what I’m saying?”
• “How do you map my phrases to commands?”
• “What kind of voice recognition is used?”



• “Why didn’t the agent understand me?”
• “Do you use any sort o [sic] machine learning to recog-

nize the accents?”
Transparency was one of the top occurring themes for

novice users (see Fig. 2) and is especially important when
developing AI systems for novice programmers and education.

Design with visualizations (RQ 1). A common theme in
the free-form responses was the desire for code visualizations.
This was in the top seven commonly occurring themes for both
novice and advanced users, and the top five themes for both
the voice- and text-based systems. Specifically, users asked
for ways to “visualize where [they] are in the program”, view
a “representation of the code [they were] making”, “see [...]
variable names or the name of the procedure”, “see which level
[they]’re at [in the program]”, and visually “modify [their]
previous lines that were misinterpreted”. As current technol-
ogy focuses heavily on visual systems and computer screens,
voice-only systems can force high memorization requirements
on users. Nonetheless, depending on the intended audience,
one may choose to avoid visualizations or make them non-
essential to the system for accessibility reasons.

Design to reduce cognitive load (RQ 2). In the thematic
analysis, some participants mentioned high cognitive load due
to a lack of visualizations (e.g., “I found it quite challenging
to figure out the logic of the program entirely in my head;
[...] it felt like I had to figure it all out before entering
anything.”). In future studies, we will analyze cognitive load
effects of integrating visualizations into CONVO. We expect
this will reduce the cognitive load for sighted users. Other
design features to potentially reduce cognitive load include
decreasing the constraint on the NL input such that users will
no longer have to remember specific phrases, and improving
the speech recognition model such that people don’t have to
repeat phrases as often, and are more likely to remember where
they are in the program.

For all cognitive load indicators (number of resets of the
system, time to goal completion, and number of times users
asked for help), we found no evidence for a significant
difference between the voice-based, text-based, and voice-or-
text-based systems; thus, each system may be a viable option
when designing for cognitive load.

Improve ASR and NLU (RQ 1). The most common theme
in the free-form responses was to improve speech recognition.
As mentioned previously, we used the Google Cloud Speech-
to-Text [25] ASR system—which is often recognized as the
top online ASR [28], [29]—for CONVO. Evidently, current
ASR systems are not sufficient for fully standalone voice-
based, NL programming systems. One potential avenue for
improvement is to develop a custom NL programming ASR
model that incorporates common NL programming phrases,
like “create a variable”, to ensure recognition of those phrases.
Nonetheless, by training on specific phrases, this may cause
the model to be less robust to new phrases, which would
somewhat defeat the purpose of a generalizable NL system.

In addition to improved speech recognition, participants
desired reduced constraint on NL input (e.g., “It’s a very cool

idea, and with expanding the dictionary it could work better.”,
“I expect more natural-language input support such as ‘nope’,
‘no thanks’, etc. would be valuable as well.”). Reducing NL
constraint was a top theme in both the text-based and voice-
or-text-based systems, as well as in both novice and advanced
users’ responses (see Fig. 2 and 3).

We are currently developing an unconstrained NL version
of CONVO to understand whether this improves or reduces
performance, as there has been research questioning the
suitability of unconstrained NL for programming [12], [13].
Nevertheless, with additional ambiguity reduction techniques,
such as conversational QA and immediate feedback from
the agent, unconstrained NL may become suitable for intro-
ductory, educational NL programming, especially due to the
positive feedback in this area from the free-form responses
(e.g., “It gives feedback, which is really useful”, “The process
is pretty interactive and fun. The idea of using natural language
to code is great and the system reacts very fast.”, “Feedback
is immediate.”).

V. LIMITATIONS

Although this study aims to address RQs 1-3 with respect
to conversational programming in general, aspects of CONVO
inevitably influenced the results. Thus, we encourage further
studies with variations on conversational programming sys-
tems. Additionally, frequent prior experience with text-based
systems and programming languages may have led to a strong
bias in favor of the text-based system, especially for advanced
users.

Additionally, there was a seeming contradiction with the
Likert scale results due to negative responses to “voice being
easier than text or voice-or-text”, but positive responses to
“voice being useful”, “liking being able to use voice”, and
“wanting to continue learning how to program using voice”,
especially for novice users. Nonetheless, according to the
free-form responses, this could be explained by participants’
frustration with ASR, but commendation of the efficiency of
the voice system (e.g., “When [voice recognition] worked,
it seemed it could be faster than typing”, “It seems like if
speech recognition worked well, it would be a better choice”, ).
This explanation is further supported by both “improve speech
recognition” and “efficient” being in the top five most common
voice-based system themes.

VI. CONCLUSIONS

In this study, we investigated the effectiveness of voice-
based, text-based, and voice-or-text-based systems in a con-
versational programming environment in terms of difficulty,
efficiency, and cognitive load indicators through free-form
responses, Likert scale questions, and user activity. Our results
show a desire for and optimism about conversational program-
ming, especially in introductory programming systems.
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