
Conversational Agents to Democratize
Artificial Intelligence

Jessica Van Brummelen
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

jess@csail.mit.edu

I. INTRODUCTION

Artificial Intelligence (AI) technology can be found nearly

everywhere. However, developing and controlling this tech-

nology is generally limited to large companies or those with

extensive training in computer science. It is difficult for many

who have application ideas for AI to even know where to start

when developing AI technology.

In [7], I empower students with little to no programming ex-

perience to develop conversational AI agents (AI programs that

communicate with humans using natural language). Through

high school workshops and block-based coding tools, students

created agents to help people remember forgotten words,

determine how to recycle items, and learn math concepts.

Students learned computational thinking (CT) and machine

learning (ML) concepts through developing these projects.

Nevertheless, this system has limitations. It uses the Alexa

Skills platform, which requires users to have access to Alexa

Developer and Amazon Web Services accounts. As well, to

speak to the agents, one must begin all conversations with

the word, “Alexa”, which can be frustrating. Furthermore, the

visual coding tool limits its user-base to those with regular

vision and those who know how to use a traditional computer.

Moving forward, I plan to develop a voice-based, con-

versational platform to empower an even wider audience —

including those with vision impairments and those without

traditional computing experience — to develop computation/

data structures, such as loops, conditionals, and objects, as

well as ML models, through natural interaction. I will explore

the effectiveness of a voice-based system compared to current

visual- and text-based coding tools to provide a low barrier to

entry to programming, teach CT skills, and engage those with

little to no experience coding in STEM-related activities.

II. VOICE-BASED AND NATURALISTIC PROGRAMMING

The majority of voice-based programming tools are for

advanced programmers, require knowledge of programming

languages, and/or are not in natural language. For instance, the

voice-based programming systems, VocalIDE, VoiceCode, and

Talon, all require an understanding of computer programming

concepts, such as programming syntax or specific language

keywords [4], [6]. Furthermore, the systems were designed

for people with normal vision, and do not include voiced

feedback, but rather require visual inspection of code.

Current naturalistic programming tools (which use human

language, like English, rather than a specific programming lan-

guage) also frequently lack voiced feedback. These systems,

such as Metafor, Pegasus, and Macho, tend to be command-

line or GUI-based programs. One promising aspect of Metafor,

however, is that it converses (via text) with the user to resolve

ambiguity. Nonetheless, Metafor, Pegasus, and Macho were

developed for a knowledgeable programmer audience [5].

Other voice-based systems have been developed for a wider

audience. For instance, visually-impaired and sighted students

co-designed voice-based systems for education in [3]. Al-

though these systems were designed for pedagogy, they were

not designed to teach programming skills. A different voice-

based system for teaching such skills was developed in [8];

however, it was heavily dependent on visual feedback.

I propose developing a conversational, voice-based, natural-

istic language system to empower nearly anyone — even those

with vision impairments — to program applications through

conversational AI.

III. CONVERSATIONAL AI IN MIT APP INVENTOR

In [7], I developed a programming tool for a non-

programmer audience to develop conversational agents. This

tool utilizes the block-based, visual coding interface of MIT

App Inventor to lower the barrier to entry to programming,

teach CT skills, and empower students to create their own

conversational agent applications. Additionally, within these

applications, students can use ML (through pretrained, long

short-term memory networks) to generate responses. Similarly,

the voice-based, naturalistic programming environment will

provide a low barrier to entry by removing syntax errors,

democratize AI through providing access to ML networks, and

teach students CT skills as they develop projects. Through

these tools, I will compare how students learn CT skills

through voice-based versus visual programming.

IV. COMPUTATIONAL THINKING & CONVERSATIONAL AI

CT frameworks are generally used to develop computer

science curricula and outline skills necessary for students to

become successful programmers. Although these frameworks

are generally derived to teach people about programming,

they may also be conceptualized as outlines for the necessary978-1-7281-0810-0/19/$31.00 ©2019 IEEE

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

239

components of a programming language. To illustrate, the

framework in [1] describes seven CT concepts, sequences,
loops, parallelism, events, conditionals, operators, and data,

which are all fundamental to a mature programming language.

Dialogs 1, 2, and 3 illustrate how some of these concepts,

including sequences, loops, and events, may be implemented

in a conversational, naturalistic programming environment.

Dialog 1. Example routine creation
A1: "Hello! What would you like to create or do today?"
U: "I want you to get my room ready for playtime."
A: "How do I do that?"
U: "First, you turn on the lights."
A: "Got it. What’s next?"
U: "Then play my favorite song."
A: "What’s your favorite song?"
U: "Count on Me"
A: "By Bruno Mars?"
U: "Yep."
A: "Okay, I saved your favorite song to be Count on

Me. After playing that, what should I do?"
U: "Make my robot dance while you play the song."
A: "Okay, I’ll do your make robot

dance routine while your favorite
song plays. What’s next?"

U: "That’s it!"
A: "Okay, I will start the get room ready for

playtime routine."

Dialog 2. Example object creation
A: "Hi there! What would you like to make or do today?"
U: "I want to make a story!"
A: "What’s a story? Can you describe it in terms of my

fundamental data types or other things you’ve created?"
U: "What are fundamental data types?"
A: "My fundamental data types are numbers, letters,

sentences, lists, and true-or-falses."
U: "A story is a bunch of sentences."
A: "Okay, so a story is a list of sentences, correct?"
U: "Yes."
A: "Alright, I will remember what a story is. Do you want

to make a specific story now?"
U: "Yes."
A: "What do you want the first sentence to be?"
U: "Once upon a time, a little girl found a small plant."
A: "Okay, what’s the next sentence?"
...
A: "To save the story, I need to know its name. What do you

want to call your story?"
U: "Sweetgum Tree Adventures."

Dialog 3. Example event creation
U: "When it’s bedtime, read me Sweetgum Tree Adventures."
A: "How do I know it’s bedtime?"
U: "Bedtime is at 8 pm."
A: "Okay, I will read, Sweetgum Tree

Adventures when it’s bedtime."

V. FUTURE WORK

A common problem in naturalistic programming is dealing

with ambiguity. As illustrated in Dialog 1, when the agent

encounters an ambiguous or unknown noun or verb, it asks the

user for clarification. This technique is similar to slot filling. In

slot filling, agents search phrases for potential candidates for

slot types (for example, the word, “Canada”, as a candidate for

the slot type, “Country”). Since the agent will not necessarily

be searching for a specific slot type, an efficient method to

parse and search for unknown/ambiguous words will need to

be implemented.

1A stands for agent and U stands for user.

Furthermore, I will implement a natural language under-

standing (NLU) system. This may involve ML-based methods,

symbolic methods, or combinations of both. For example,

although transformer networks have been shown to be effective

at syntactic parsing [2], I will need to ensure specific concepts,

such as phrases that indicate conditionals, like if and since, are

parsed and understood correctly. The seven CT concepts from

[1] will need special attention, which may involve developing

a set of rules to complement a standard NLU system.

Other work will include ensuring the agent adheres to

conversational AI principles. In [7], I define these as the

flexible, concise, correct, relevant, natural, social extent, direct
definition, and ethical principles. Specific attention to the con-
cise and correct principles will be taken. Together, these two

principles articulate how conversational agents should share

an appropriate amount of information based on the current

context. For instance, a new user may need an explanation of

the agent’s fundamental data types (as shown in Dialog 2),

whereas an experienced user might not.

The effectiveness of the proposed voice-based system will

be tested through Wizard of Oz experiments, general user

testing, and field studies. The main aspects to be tested include:

• Barrier to entry compared to block- and text-based coding

• Non-expert programmer experience of the system

• Experience of those with visual impairments

• Ability of the system to teach CT skills

• Ability of the system to teach ML concepts

VI. CONCLUSIONS

Through a conversational, naturalistic programming tool, I

plan to investigate the effectiveness of voice to reduce the

barrier of entry to programming, democratize AI, and teach

CT skills.

ACKNOWLEDGMENT

This work was supported by an Alexa Graduate Fellowship.

REFERENCES

[1] Karen Brennan and Mitchel Resnick. New frameworks for studying and
assessing the development of computational thinking. In Proceedings
of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada, volume 1, page 25, 2012.

[2] Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive
encoder. ACL, 2018.

[3] Oussama Metatla, Alison Oldfield, Taimur Ahmed, Antonis Vafeas, and
Sunny Miglani. Voice user interfaces in schools: Co-designing for
inclusion with visually-impaired and sighted pupils. In Proceedings of
CHI on Human Factors in Computing Systems. ACM, 2019.

[4] Anna Nowogrodzki. Speaking in code: how to program by voice. Nature,
559(7712):141, 2018.

[5] Oscar Pulido-Prieto and Ulises Juárez-Martı́nez. A survey of naturalistic
programming technologies. ACM Computing Surveys, 50(5):70, 2017.

[6] Lucas Rosenblatt. VocalIDE: An IDE for programming via speech
recognition. In Proceedings of the 19th International ACM SIGACCESS
Conference on Computers and Accessibility, pages 417–418. ACM, 2017.

[7] Jessica Van Brummelen. Tools to create and democratize conversational
artificial intelligence. Master’s thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2019.

[8] Amber Wagner and Jeff Gray. An empirical evaluation of a vocal user
interface for programming by voice. International Journal of Information
Technologies and Systems Approach (IJITSA), 8(2):47–63, 2015.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

240

