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When triggered, AdjustAR
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Does the content appear as intended?

{objects: [{outline: "green", object: "raccoon", referent:
"trash can", referent_position: "below", correct: false}l}

Where should it be anchored to respect author intent?

{objects: [{outline: "green", x: 267, y: 460}]1}

Adjustments are backprojected into 3D space.

Figure 1: ADJUSTAR corrects misaligned AR content at runtime: (1) authors place content relative to a georeferenced 3D model
of the target site; (2-3) users localize and view the scene in-situ, where misalignments may occur due to environmental changes;
(4) the system composites live and authored views; (5) an MLLM detects misalignments and infers corrected 2D anchors; (6)
corrections are backprojected into 3D and updated in the scene; (7) the user’s AR view is updated.

Abstract

Site-specific outdoor AR experiences are typically authored using
static 3D models, but are deployed in physical environments that
change over time. As a result, virtual content may become mis-
aligned with its intended real-world referents, degrading user ex-
perience and compromising contextual interpretation. We present
ADJUSTAR, a system that supports in-situ correction of AR content
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in dynamic environments using multimodal large language mod-
els (MLLMs). Given a composite image comprising the originally
authored view and the current live user view from the same per-
spective, an MLLM detects contextual misalignments and proposes
revised 2D placements for affected AR elements. These corrections
are backprojected into 3D space to update the scene at runtime. By
leveraging MLLMs for visual-semantic reasoning, this approach
enables automated runtime corrections to maintain alignment with
the authored intent as real-world target environments evolve.

CCS Concepts

+ Human-centered computing — Mixed / augmented reality;
» Computing methodologies — Scene understanding.
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1 Introduction

Model-based authoring is the dominant approach for designing out-
door site-specific AR experiences [16]. Remote authoring tools [6,
14] enable anchoring virtual content relative to georeferenced 3D
models via visual positioning systems (VPS). However, these mod-
els are static. Changes in the physical environment can cause mis-
alignments between virtual content and its real-world referents,
degrading user experience and requiring repeated site visits [16].

While prior systems have explored runtime adaptation through
semantic constraints or layout optimization [2, 4, 12, 13], these
efforts largely focused on user interfaces. ScalAR [17] applied this
concept to AR authoring, introducing semantic-driven virtual prox-
ies that supported model-based authoring. Li et al. [10] presented a
system that extracted semantic structure from point clouds to retar-
get interactive narratives through story graph sampling. However,
both approaches remained limited to indoor environments with
narrow semantic vocabularies and relied on offline processing.

Recent advances in large language models (LLMs) and their multi-
modal variants (MLLMs) enable spatially grounded visual-semantic
reasoning [1, 18]. Recent work has begun to explore LLMs for
mixed-reality authoring [3, 5], with ImaginateAR [9] extending this
concept to outdoor contexts through complex scene understanding
and asset generation pipelines. While these systems expand the
expressive potential of authoring, they have not focused on main-
taining spatial consistency when the target environment changes.

To address this gap, we present ADJUSTAR, a system that com-
bines model-based authoring with MLLM-guided visual-semantic
correction. Authors follow standard creation workflows, while at
runtime, ADJUSTAR compares rendered and live views to identify
and correct misalignments that disrupt the intended experience.
Rather than supporting re-authoring [16], ADJUSTAR aims to adap-
tively preserve the original design, treating the original authored
scene as the canonical expression of author intent.

2 ApjusTAR System

ADjUSTAR extends standard site-specific AR pipelines with a run-
time correction mechanism driven by MLLMs (Fig. 1). Authors
create experiences using the Niantic SDK for Unity [14], placing
AR elements relative to site-specific 3D models. At runtime, users
localize via VPS to align the scene with their view. When the physi-
cal target environment is unchanged, AR content appears correctly.
However, when referents have moved or disappeared, visual mis-
alignments may occur. To handle such cases, ADJUSTAR introduces
a visual-semantic correction process that aims to address misalign-
ments and restore author intent.
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Visual Comparison for In-Situ Adjustment. ADJUSTAR per-
forms a combined evaluation and adjustment process that can be
triggered manually or periodically. When triggered, the system cap-
tures two snapshots from the current camera pose: the live AR view
and a synthetic rendering of the authored scene, generated using
the model that was originally used for authoring. Virtual elements
are uniquely color-coded for content-agnostic object references.

The system concurrently caches the camera intrinsics, extrinsics,
and depth map for each snapshot. These are later used to compute
corrected 3D anchors once MLLM feedback is available, ensuring
that repositioning aligns with the visual context at trigger time,
even if the user has since moved.

The two images are passed to an MLLM (Gemini 2.5 Flash [7])
to assess whether each element appears aligned with its physi-
cal referent. For misaligned elements, another MLLM (Gemini 2.5
Pro [8]) is prompted to provide corrected 2D anchor points in image
space, optionally including a 3D vertical offset. Both responses are
returned in a JSON format based on a pre-defined schema. If the
MLLM determines that a physical referent is no longer present or
is fully occluded, ApjusTAR displays a rendered snapshot of the
original authored experience to provide the user with an indication
of the intended experience. Prompts are detailed in Appendix A.

3D Repositioning via Backprojection. Corrected 2D anchors
are backprojected into 3D world coordinates using the depth map
and camera information cached at trigger time. The resulting 3D
point becomes the new anchor, located at the bottom center of the
element’s bounding box. Optional vertical 3D offsets are applied
to support elevated placements (e.g., hovering arrows). Finally, the
AR scene is updated to reflect the adjusted anchor positions and is
displayed to the user.

3 Future Work

Future work on ADJUSTAR should address system performance,
authoring support, and empirical validation, including both quanti-
tative evaluation and user studies in diverse deployment contexts.

Performance improvements may include reducing the correction
pipeline latency (currently ~10-20 seconds) and improving accu-
racy, potentially through prompt optimization and additional input
modalities such as depth, multi-view, or mesh data [19]. Advances
in MLLMs, especially in spatial reasoning and 3D grounding, are
likely to support these improvements [1, 18].

The current correction mechanism operates on static image pairs
where referents and AR elements are visible within the same frame.
Future work could incorporate spatiotemporal observations to han-
dle occlusion or out-of-frame references. When referents are miss-
ing, virtual proxies may help preserve semantic continuity.

Placement decisions are currently based on a bottom-center
heuristic, where the MLLM anchors objects relative to their base
with an optional vertical offset. Future work could explore other
anchoring strategies referencing surfaces, edges, or other geomet-
ric features [15, 17]. While prior work has examined semantically
meaningful placements in narratives [10, 11], how closely AR con-
tent should align with target environments requires further explo-
ration. For example, for a site-specific AR story, a character placed
by a specific tree might appear near a similar one if the original is
absent, whereas training applications may require exact replication.
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Finally, supporting author-defined semantic constraints (e.g.,
“must be visible from entrance”) could enable more precise intent
specification and guide adaptation to contextual changes such as
crowdedness, seasonal change, or other situational changes [12].
MLLMs offer a mechanism for interpreting such constraints flexibly,
enabling adaptive behavior from sparse multimodal input.
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A System Prompts

A.1 Initial Check for Correct Alignment
(Gemini Flash)

You are a visual analysis AI agent. You are given a
side-by-side image showing two versions of the same
augmented reality (AR) scene:

- Left image: AR as captured in real-world use.

- Right image: AR as authored and intended to
appear.

For each outlined object, assess whether its
placement in the left image matches its placement in
the right image, relative to its physical referent. A
physical referent is the real-world object, surface,
or spatial location to which the AR content is
anchored or aligned. It provides the spatial or
semantic basis for interpreting the AR element in the
physical environment and is often the nearest
visible surface or object.

For each object, indicate:

* The name of the physical referent.

* The position of the referent relative to the

outlined object in the right image (from the camera's
perspective).

* Whether the placement in the left image is correct.
* Whether the physical referent is visible in the
left image.
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A.2 Request for Adjusted Anchor Points
(Gemini Pro)

You are a visual analysis AI agent. You are given a

side-by-side image showing two versions of the same

augmented reality (AR) scene:

- Left image: AR as captured in real-world use.

- Right image: AR as authored and intended to appear.

Your task is to determine whether each AR element (e.
g., arrows, labels, icons) in the left image is
correctly aligned with the same physical referent as
in the right image.

A physical referent is the real-world object, surface,
or spatial location to which AR content is anchored
or aligned. It provides the spatial or semantic basis
for interpreting the AR element in the physical
environment and is typically the nearest visible

surface or object.

If an AR element in the left image is misaligned,
your task is to provide a corrected anchor position
directly on the physical referent in the left image.
If needed, also specify a vertical Y offset (in
centimeters) indicating how far above or below this
point the AR element should appear in 3D space. Your
task is as follows:

1. Identify misalignments

Examine all AR elements in the left image. Each
element is outlined in a unique color: "green", "blue
", "magenta", "red", "orange", "yellow", or "cyan".
For each element, assess whether it is anchored to
the same physical referent as in the right image.

2. Correct misaligned elements
For each element that is not aligned with the correct
referent:

- Specify a corrected anchor point in the left image.
- This point must lie directly on the same component
of the physical referent, not near it or floating
above it.

- Prioritize spatial accuracy. The position must
align with the physical referent even if that
referent has moved or changed appearance.

- Emphasize local visual consistency: prefer
alignment with the object or surface the AR element
was originally intended to refer to, rather than
matching unrelated global features such as sky,
shadows, or pavement.
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- If either image is visually degraded or ambiguous,

make the best possible contextual inference about the
referent's location based on visible cues.

- Provide coordinates as follows:

* X and Y: Normalized to the left image dimensions,
ranging from @ to 1000. Origin (@, @) is top-left;
(1000, 1000) is bottom-right.

* Y offset (in centimeters): A vertical offset in 3D

space from the anchor point. Positive values are

upward, negative values are downward. If the element
is placed directly on the referent or the vertical

offset is unknown, use ~0°.

3. Handle missing physical referents

If an AR element in the right image is meant to point
to a physical referent that is no longer present or

fully occluded in the left image, mark the element as
"Missing".

4. Skip correct elements

If the AR element in the left image correctly points
to or aligns with the same referent as in the right
image, mark it as "Correct". Do not suggest changes.
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