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start the AR session.

Sure! How about
adding a creature,
maybe an animal, to
bring the scene
to life?

1. Localizing the user: When the phone is pointed
at a location, a Visual Positioning System (VPS)
matches camera images to a 3D map to determine
the user’s position, retrieve the scene graph, and
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Real-World User Authoring

3. Authoring in the real world: ImaginateAR places

Great idea! Let's
add a monster—

colorful.

2. Interactive session: The user
speaks with ImaginateAR to

the asset as instructed. Users can manually refine
placement or choose from alternate Al suggestions.

I don’t have a
cute monster in
my library...
Generating one!

brainstorm ideas and give
instructions. The system retrieves
or generates 3D assets as needed.

Figure 1: ImaginateAR enables non-expert users to author personalized AR experiences through natural language interaction.
After a location is pre-scanned and processed by our scene understanding pipeline (left), users can brainstorm, generate, and
place virtual content on-site with AI assistance (right), and make manual adjustments as needed.
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Abstract

While augmented reality (AR) enables new ways to play, tell sto-
ries, and explore ideas rooted in the physical world, authoring
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personalized AR content remains difficult for non-experts, often
requiring professional tools and time. Prior systems have explored
Al-driven XR design but typically rely on manually defined VR
environments and fixed asset libraries, limiting creative flexibil-
ity and real-world relevance. We introduce ImaginateAR, the first
mobile tool for Al-assisted AR authoring to combine offline scene
understanding, fast 3D asset generation, and LLMs—enabling users
to create outdoor scenes through natural language interaction. For
example, saying “a dragon enjoying a campfire” (P7) prompts the
system to generate and arrange relevant assets, which can then be
refined manually. Our technical evaluation shows that our custom
pipelines produce more accurate outdoor scene graphs and gener-
ate 3D meshes faster than prior methods. A three-part user study
(N=20) revealed preferred roles for Al, how users create in free-
form use, and design implications for future AR authoring tools.
ImaginateAR takes a step toward empowering anyone to create AR
experiences anywhere—simply by speaking their imagination.
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1 Introduction

Augmented Reality (AR) can transform everyday spaces into inter-
active canvases, blending digital content with the physical world.
Today, AR is used not just for entertainment, but also to bring people
together through games like Pokémon GO [69], support location-
based education [51], and amplify social causes through public art
and storytelling [95]. Yet, most AR content is created using pro-
fessional tools like Unity [105], Blender [11], and Lens Studio [96],
requiring specialized skills and limiting who can create and what is
possible. While this enables highly polished experiences, it leaves
everyday users without a way to easily and creatively customize
their surroundings with AR. Imagine if everyone had the power
to create their own AR worlds—teachers could build interactive
history lessons in a schoolyard, artists could install digital murals
on city walls, and friends could fill a beach with dancing penguins.

Although some consumer AR applications like Adobe Aero [2],
IKEA Place [46], and LEGO AR Studio [56] allow users to create
AR content, they rely on predefined assets and manual placement,
limiting creative flexibility and expressivity. To address these limi-
tations, recent research has explored generative Al for authoring
in extended reality (XR). For instance, systems like SceneCraft [43],
3D-GPT [99], Ostaad [3], VRCopilot [121], LLMR [26], LLMER [20],
and Dreamcrafter [107] integrate large language models (LLMs)
for XR scene generation and editing via natural language interac-
tion. While promising, these systems primarily target manually
defined environments and lack in-situ authoring, real-world scene
understanding, and/or open-ended asset generation, hindering truly
personalized AR creation. Furthermore, most scene understanding
algorithms are trained on indoor data [21, 36, 50, 79, 101]—so even
if prior XR systems sought to incorporate scene understanding,
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existing models are not readily applicable to outdoor use—despite
outdoor AR applications having proven impactful [51, 69, 95].

Suppose anyone could build an AR scene simply by speaking
to an AL A child might turn their backyard into a medieval king-
dom by saying, “Place a pink castle here.” and “Add a fire-breathing
dragon on the fence!” An urban planner could preview a structure
with, “Place a five-story apartment building here.” and “Make it twice
as tall” And anyone could build just for fun. This is our vision for
AR authoring: enabling users to create immersive scenes grounded
in the real world by describing what they imagine. In this paper,
we take a step toward that vision by supporting AR authoring in
a wide range of static outdoor environments. We introduce Imag-
inateAR, the first mobile tool for Al-assisted AR authoring that
generates and arranges virtual assets from speech input, facilitating
their seamless integration into the physical world. ImaginateAR
achieves this by pushing the boundaries of (1) outdoor scene un-
derstanding, (2) fast 3D asset generation, and (3) LLM-driven nat-
ural language interaction—each a significant challenge for fully
adaptive AR. Together, these advances help bring generative scene
authoring—previously confined to VR—into real-world AR.

To address real-world scene understanding, we updated open-
vocabulary 3D instance segmentation models—typically trained on
indoor data and reliant on user-specified queries—to function au-
tonomously outdoors. Specifically, we enhance OpenMask3D [101]
with GPT-4o [77] for consistent, automatic outdoor semantic la-
beling and apply HDBSCAN [64] clustering to merge redundant
object masks. This produces structured scene graphs composed of
labeled 3D bounding boxes, enabling spatial reasoning in real-world
contexts. To improve usability and ensure a more complete view of
the environment, we perform scene understanding offline on pre-
scanned environments and retrieve the relevant scene graph at run-
time using a Visual Positioning System (VPS) [48], rather than requir-
ing users to scan live. For dynamic 3D mesh generation—essential
for creativity and personalization—we contribute a pipeline that
encourages well-formed AR assets (i.e., complete, volumetric, prop-
erly oriented, and scaled), while running significantly faster than
prior methods. Our approach expands user input with GPT-4o, syn-
thesizes reference images using Dall-E 2 [75], segments foreground
objects via DIS [82], and lifts them into 3D using InstantMesh [117].
Finally, a multi-agent LLM pipeline enables speech-driven interac-
tion: a Brainstorming agent suggests scene ideas, an Action Plan
agent determines spatial relationships, and an Assembly agent up-
dates the scene graph for coherent placement.

To evaluate ImaginateAR, we conducted a technical assessment
of our scene understanding and asset generation pipelines, along
with a three-part user study in a public park with 20 participants.
Our scene understanding pipeline outperformed the base Open-
Mask3D [101] model and ablated variants of our pipeline, while
our asset generation pipeline achieved comparable quality to state-
of-the-art methods but with a significantly faster, sub-minute run-
time. As part of our technical evaluation, we also conducted a
demonstration-based assessment across varied outdoor scenes, show-
ing that ImaginateAR functions reliably beyond the user study set-
ting. In the user study, participants first explored three authoring
modes—manual, Al-assisted, and Al-decided—to evaluate trade-offs
between control and automation during different stages of AR au-
thoring. They then used ImaginateAR to freely design their own
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AR experiences (Part 2), followed by a co-design session to brain-
storm future features (Part 3). Participants enjoyed interacting with
ImaginateAR, asking it to “Put a dancing T-Rex on the grass” (P1)
or “Make a helicopter hover over the shed” (P14). Across sessions,
users preferred a hybrid approach—leveraging Al for rapid and
creative scene generation while retaining manual control for fine-
tuned customization. Al assistance accelerated ideation and spatial
arrangement, but participants often opted for manual refinement to
ensure their creative intent was more precisely reflected in the final
scene. We conclude by discussing current limitations and future
directions for Al-assisted AR authoring.

In summary, our contributions include: (1) ImaginateAR, a novel
Al-assisted AR authoring tool that integrates real-world scene un-
derstanding, generative Al, and LLM-based reasoning to streamline
content creation; (2) technical innovations in outdoor scene under-
standing, fast 3D asset generation, and a multi-agent LLM pipeline
for speech interaction; and (3) insights into how users engage with
Al-assisted AR authoring—including their balance of automation
and control, free-form use, and desired future features.

2 Related Work

We situate our work at the intersection of HCI and computer vision
(CV), drawing from research on Al-powered XR authoring, real-
world 3D scene understanding, generative Al for content creation,
and Al assistance in creative workflows.

2.1 Al-Powered XR Authoring

Because it involves 3D modeling, programming, and spatial design,
creating XR content is inherently challenging [7, 66]. To lower this
barrier, commercial tools like Adobe Aero [2], Unity MARS [106],
and Torch [103] offer direct manipulation interfaces for placing
virtual objects, enabling users to manually design scenes, albeit
without Al-driven automation or generation. Research prototypes
such as Pronto [58], Rapido [57], and ARAnimator [120] simplify
AR prototyping through sketches and demonstration-based input,
though they primarily support 2D content. Other systems, such
as SemanticAdapt [22], ARTiST [112], and Lindlbauer et al. [60],
automate content arrangement based on scene semantics but focus
on adaptive user interfaces rather than open-ended scene creation.
In our work, we explore how generative Al and real-world scene
understanding can further lower authoring barriers, taking a step
toward enabling anyone to create any AR experience.

Several recent systems have also explored using Al to streamline
XR authoring. For instance, SonifyAR [98] generates context-aware
sound effects in mobile AR by leveraging LLMs. Others, such as
BlenderGPT [1], SceneCraft [43], and 3D-GPT [99], enable users to
generate 3D models via natural language, which can later be ar-
ranged into virtual scenes—but they lack fast, in-situ authoring, lim-
iting on-site ideation and iteration. More comprehensive tools like
Ostaad [3], DreamCodeVR [31], VRCopilot [121], Dreamcrafter [107],
and LLMR [26] go further by allowing users to iteratively prompt
LLMs to build up full XR scenes. While these systems demonstrate
the potential of LLM-assisted XR content creation, they primar-
ily target VR and/or rely on predefined asset libraries, limiting
expressivity, adaptability, and real-world interaction. Closest to
our work, LLMER [20] extends LLMR to mixed reality, and Fang
et al. [29] integrate scene graphs, LLMs, and AR to facilitate robot
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navigation programming. However, both systems rely on manually
constructed scene representations rather than automated scene un-
derstanding models. Ultimately, no existing system fully supports
in-situ, speech-driven AR authoring with real-world scene under-
standing and open-ended asset generation. Prior work has also
largely overlooked outdoor AR authoring, despite its proven im-
pact in fun, education, public art, and social connection [51, 69, 95].

Building on this foundational work, we explore how outdoor
scene understanding, fast 3D mesh generation, and LLM-driven
speech interaction can help bring Al-assisted scene authoring—once
limited to VR—into real-world AR.

2.2 Real-World 3D Scene Understanding

Understanding real-world environments is a fundamental challenge
for AR and robotics applications [10, 16]. To seamlessly integrate
virtual content into physical spaces, systems must capture both geo-
metric and semantic properties of a scene. Typically, this is achieved
in two steps: first, a 3D map of the environment is built using
cameras [67, 91], sometimes augmented with depth or IMU sen-
sors [25, 68]. Next, semantic labels are assigned through CV models
trained on 3D datasets [24, 28], enabling object recognition [92, 101].
Beyond individual object detection, some systems structure this
information into scene graphs [6, 55, 88, 109, 113], where objects
are nodes and relationships (e.g., “a bench is next to a tree”) form
edges. This structured representation enables high-level reasoning
for context-aware applications, including ours.

Recent advances in multimodal models, such as CLIP [83] and
vision-language models (VLMs), have enabled open-world object
detection [21, 36, 50, 79, 101], allowing models to recognize objects
beyond predefined labels. This is critical for real-world use, as envi-
ronments vary widely—indoor spaces differ from outdoor settings,
and even rural and suburban outdoor areas contain distinct objects.
Recent efforts in open-vocabulary scene understanding have inte-
grated 3D cues directly into LLMs [45, 63, 118], enabling agents to
perform grounding, question-answering, and captioning within 3D
environments. While promising, most open-vocabulary segmenta-
tion models rely on query-based retrieval [101], identifying scene
objects via user prompts or predefined vocabularies. This poses chal-
lenges for generating scene graphs: user prompts introduce latency
during live graph construction for AR authoring, while defining
a single comprehensive vocabulary for arbitrary scenes—needed
for offline computation—is difficult. Furthermore, prior work has
largely focused on indoor spaces, where object categories are more
constrained and fundamentally different from those outdoors.

As such, we explore how existing open-vocabulary 3D instance
segmentation models could be updated for outdoor AR—enabling
ImaginateAR to generate structured scene graphs of diverse environ-
ments through an automatic, offline scene understanding pipeline.

2.3 Generative Al for Content Creation

ImaginateAR leverages generative Al for fast, open-ended 3D asset
creation, allowing users to verbally generate objects on demand—
supporting creative flexibility and expressivity. Traditionally, 3D
models are crafted by experts using professional tools, a time-
consuming process infeasible for everyday users. While generative
models have significantly advanced in 2D content creation, enabling
high-quality image generation from text prompts [32, 53, 85-87, 89],
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their extension to 3D remains an ongoing challenge. Diffusion-
based methods [40] have also improved realism in image synthe-
sis, even supporting controls such as image-based guidance and
structured constraints like depth, sketches, and key poses [65, 122].
However, these techniques still focus on 2D outputs rather than 3D
assets required for AR.

Generating high-quality 3D content is significantly more com-
plex than image synthesis, requiring solutions that balance effi-
ciency and realism. Early text-to-3D models, such as DreamFu-
sion [81], required over 30 minutes on a powerful GPU [39] to
generate a single asset, making them impractical for in-situ use.
As an alternative, prior systems like LLMR [26] relied on large as-
set libraries (e.g., Sketchfab), which—while expansive—often lack
imaginative content such as a “two-headed giraffe” (P2), limiting
creativity. Today, techniques aim to accelerate 3D asset creation,
including zero-shot generation [49] and single-image-to-3D ap-
proaches [12, 19, 41, 62, 117]. Among these, InstantMesh [117] en-
ables rapid 3D lifting (i.e., reconstructing a 3D shape from a 2D
image) and texturing from a single image in seconds. To ensure
fast and flexible content generation, ImaginateAR employs DALL-E
2 [85] to synthesize a 2D image from speech input, then lifts it
into 3D using InstantMesh. This pipeline generates a fully textured
3D model in approximately 30 seconds—substantially faster than
prior methods in our technical evaluation, and sufficient to sup-
port creative iteration in our user study. Generation speed remains
a challenge, but 3D generative models are rapidly improving in
both speed and fidelity [114-116, 124]. As these models advance,
our pipeline can adopt faster or higher-quality components—like
replacing InstantMesh—without major system changes.

2.4 Al Assistance in Creative Workflows

As a fully functional Al-infused AR authoring tool, ImaginateAR
presents a unique opportunity for examining how Al can support
creative expression in immersive, real-world environments. While
we allow free-form use in our study, we also include a controlled
investigation of varying levels of Al involvement to examine trade-
offs between automation and human agency—a longstanding con-
cern in HCI [5, 42, 94]. Prior work shows that while Al can enhance
expressivity and efficiency, excessive automation may reduce user
control or creative ownership [73, 94]. Although this tension has
been studied in writing, design, and programming [8, 9, 18, 37, 100],
its role in AR authoring remains underexplored. Our study helps
fill this gap, uncovering not only what users want to create with
ImaginateAR but also how Al can best assist them along the way.

3 Design Goals for Al-Infused AR Authoring

Our research is motivated by an overarching belief that AR au-
thoring tools should allow anyone to create anything, anywhere,
removing technical barriers and making immersive content creation
as effortless as speaking an idea aloud. Imagine a student in their
schoolyard curious about ancient civilizations saying, “Construct
a Mayan temple next to the swings.” and “Show a person in histori-
cal clothing next to it!”. After each request, interactive AR content
should quickly appear, blending seamlessly into their surroundings.
To pursue this vision, we synthesized the following design goals:
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G1: In-Situ AR Authoring Anywhere. Users should be able
to create, modify, and iterate on AR content directly within their
environment, treating their surroundings as a canvas for in-situ
authoring. Prior XR authoring systems rely on manually defined
and often VR-based environments [3, 20, 26, 29, 31], while scene
understanding models typically target indoor spaces and require
user queries or predefined vocabularies [50, 79, 101]. Instead, we
need to update these models to autonomously interpret a wide
range of outdoor scenes.

G2: Generate High-Quality 3D Assets Quickly. To support
creativity and maintain flow, users need visually compelling AR as-
sets without long waits. Traditional 3D modeling is time-consuming
and technically demanding, and while generative models are im-
proving, they often sacrifice either quality or speed (e.g., Prolific-
Dreamer [110] takes over 240 minutes on a powerful GPU for a
single asset [39]). Achieving in-situ AR authoring requires generat-
ing AR-ready 3D assets in seconds—not minutes or hours.

G3: Simple Speech-Driven Interactions. AR authoring should
feel natural and effortless, letting users create and modify scenes
with simple voice commands. For example, in the Mayan temple
scenario, a student might say, “Make the temple bigger” or “Remove
the person.” To lower technical barriers, we need LLM-driven speech
interactions—enabled by structured scene graphs for spatial context.

G4: Adjustable AI Assistance. Al should support—not
override—human creativity, offering just the right level of help
while keeping users in control. Preferences for Al involvement vary
across users and tasks [5, 42, 73, 94]. Additionally, when Al makes
mistakes, users need clear ways to recover—such as re-prompting
or direct manipulation. To support both flexibility and error recov-
ery, AR authoring systems should let users decide how much Al
assistance they want and when, and provide manual tools.

4 The ImaginateAR System

Our goal is to explore how Al can help users bring their ideas to life.
To support this, we developed ImaginateAR, a novel Al-assisted AR
authoring tool that lets users create, arrange, and modify virtual
content in diverse, static real-world environments using speech.
The ImaginateAR system consists of three key components: (1)
an offline scene processing module, (2) a remote asset generation
server, and (3) a mobile AR interface. The scene understanding
pipeline structures the environment into a scene graph—a compact
textual representation of object labels and their 3D bounding box
coordinates. When users request content that is not yet available,
the server generates 3D assets on demand. The mobile interface
lets users issue speech commands, adjust content manually, and
visualize their ideas in-situ. At a high level, ImaginateAR retrieves
the relevant scene graph, processes voice commands, interprets
user intent, fetches or generates 3D assets as needed, updates the
scene graph accordingly, and renders changes in the AR scene. We
include all LLM and VLM prompts in the Supplementary Materials.

4.1 Offline Scene Understanding

To support in-situ AR authoring nearly anywhere (Design Goal 1),
we update an open-vocabulary 3D instance segmentation model to
operate autonomously in outdoor environments.
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4.1.1  Background Information.
We first introduce scene graphs and the OpenMask3D model [101],
which serve as the foundation of our system.

What is a Scene Graph? A scene graph is a structured textual
representation of a visual scene, encoding semantic details such as
object labels, locations, and spatial extents. This compact format
is well-suited for processing by LLMs. Unlike prior approaches
like ConceptGraphs [36], which include explicit relationship nodes
(e.g., “next to” or “on top of”), our scene graphs focus solely on
individual objects and their spatial properties. Modeling inter-object
relationships is left as future work.

What is OpenMask3D? Our scene understanding method
builds on OpenMask3D, a state-of-the-art system for open-
vocabulary 3D instance segmentation. Given an input point cloud
and an RGB-D video with camera poses, OpenMask3D operates in
two stages. First, the Class-Agnostic Mask Proposal (CAMP) network
generates a pool of 3D binary masks, Sy, where each mask repre-
sents a potential object instance by marking its corresponding 3D
points in the point cloud with a value of 1. Second, a CLIP [83] em-
bedding is computed for every mask M € S;. The system performs
a depth-based visibility check to identify frames where M is highly
visible. Visible points from these frames are used to prompt the
Segment Anything Model (SAM) [54] at multiple scales, extracting
image regions depicting M. These regions are then fed into CLIP
to generate embeddings, which are aggregated into a single vec-
tor per M. At test time, users can query objects via text prompts,
which are converted into CLIP embeddings and matched against
the precomputed embeddings of all masks to retrieve relevant ob-
ject instances. Notably, OpenMask3D was trained and evaluated
primarily on indoor datasets such as ScanNet [24].

However, we identified two main limitations for our use case.
First, the CAMP module often produces an excessive number of
masks—frequently over 120—making it difficult to construct com-
pact scene graphs that can be efficiently processed by LLMs. Second,
relying on user-defined prompts during use introduces latency, as
each query must be embedded and compared against the full set of
mask embeddings. Precomputing scene graphs with a predefined
vocabulary can avoid this cost but requires a comprehensive la-
bel set, which is difficult to define given the variability of outdoor
scenes. Hence, OpenMask3D needs to be updated for outdoor AR.

4.1.2  Our Process.
We now describe our offline scene understanding pipeline, including
how we capture point cloud data and adapt OpenMask3D to address
key limitations. We also discuss the scalability of our approach.
Scene capture. A key design choice in ImaginateAR is to rely
on pre-scans of environments and process them offline, rather than
running scene understanding models in real-time as users actively
scan their surroundings. We chose this approach for three key
reasons: first, it enhances ease of use, as live scene understanding
requires users to manually and thoroughly scan their environments,
introducing unnecessary friction. Instead, digital twins enable pre-
computed scene understanding, allowing instant retrieval of scene
graph data relevant to the user’s location. Second, because users can-
not be expected to scan every detail, live scene analysis often results
in incomplete context. In contrast, pre-scanned environments can
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offer a more comprehensive spatial understanding—enabling inter-
actions like placing objects behind the user or real-world structures,
even if those areas were never in the camera view. Lastly, real-time
scene understanding models typically perform worse than offline
methods, especially in complex outdoor environments. That said,
relying on pre-scans may limit scalability compared to live methods
and may not reflect dynamic scene changes (e.g., a chopped-down
tree or moving people), which we discuss later.

To generate a 3D representation of a scene, we capture the envi-
ronment using a commercial depth-sensing device. In our experi-
ments, we used an iPhone 13 Pro, which has LiDAR, running our
custom-built scanning app that records RGB images, depth maps,
and camera poses. These data sources are integrated into a 3D point
cloud, similar to commercial applications like Scaniverse [71] and
Polycam [80]. Our method is device-agnostic and can be extended
to Android devices running ARCore [33].

Pre-Processing. To ensure accurate scene understanding and
protect user privacy, we apply several pre-processing steps to re-
fine captured data. Personally identifiable information (PII), such
as faces and license plates, is removed using an off-the-shelf blur-
ring model [84]. We also enhance depth maps by filling holes (i.e.,
missing values) using a monocular depth model [119]. Because
some regions lack depth due to sensor limitations, we infer relative
monocular depth and re-scale it with valid LIDAR points to produce
dense metric depth maps.

Initial Mask Prediction. We use the pre-trained CAMP net-
work from OpenMask3D to generate an initial pool of binary masks,
S1, where each mask represents a potential object or object part.
However, we observed some masks are small or redundant. Thus,
we filter the pool by removing small and duplicate masks, and
merging highly overlapping ones, resulting in a refined subset Syy.

Mask Classification. In this step, we infer a semantic label
for each mask in Sy;. OpenMask3D’s CLIP-based strategy requires
either generating scene graphs at test time (via user prompts) or
using predefined vocabularies. In contrast, we classify each detected
object using a vision-language model (VLM) [36]. We modify Open-
Mask3D’s frame selection strategy to select the image with the
highest visibility of the object mask, using monocular depth maps
to assess point visibility. From this image, we extract two crops:
(1) a context crop (Cx), which includes surrounding scene details,
and (2) an object crop (Og), which isolates the object. These crops
are computed only at OpenMask3D’s largest scale to better capture
contextual information. We leverage GPT-4o [77] as the VLM to
infer a semantic label from Oy and Cy, incorporating a running list
of previously predicted labels to enforce consistency. This reduces
synonym mismatches (e.g., standardizing “road” instead of allowing
similar variations like “road surface”). We refer to this Al agent as
the Object Classifier, responsible for generating structured semantic
labels across diverse outdoor scenes (Figure 2).

Semantic Point Cloud and Clustering. After assigning se-
mantic labels to instance masks, we generate a structured scene
representation by storing 3D bounding boxes enclosing each mask
in Spr. However, Sy may still contain multiple masks for the same
object, especially when overlapping masks do not meet the thresh-
old for the prior filter. This redundancy can introduce duplicate
instances in the final scene graph. To address this, we compute a
final refined set of masks, Sr, using semantic information from a
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Figure 2: Diagram of the 3D scene understanding pipeline. Given an input point cloud, we first estimate 3D masks. Next, we
assign a semantic label to each mask using a VLM and propagate the label to all points within the mask, producing a semantic
point cloud. We then cluster nearby points with the same label to infer the final set of 3D masks, from which we extract 3D
bounding boxes. For visualization, we show only the bounding boxes, not the underlying masks. The Pavement box is enclosed

within the Road box and is therefore not visible.

VLM. For each mask k in Sps, we propagate its semantic label to its
associated 3D points, producing a semantic point cloud. Points not
assigned to any mask are labeled as unknown and excluded from
the final output. We then apply HDBSCAN [64] to cluster nearby
points with the same label. This merges spatially close, semantically
identical masks (e.g., object parts), producing a more compact set Sp
compared to Sys. For example, in Figure 2, the number of instances
is reduced from 208 (Sy) to 15 (Sps) and finally to 6 (Sf).

Scene Graph Creation and Deployment. We construct a scene
graph by storing semantic labels along with the minimum and
maximum values of the 3D axis-aligned bounding boxes enclosing
masks in Sg. Since these graphs primarily encode static objects, they
remain valid across multiple AR sessions and users, as transient
elements (e.g., moving people) are typically absent from traditional
point cloud reconstructions. Scene graphs are generated offline
using a machine with an NVIDIA L4 GPU; while there is room for
optimization, the full pipeline still completes in just a few minutes
per scan (Figure 3). During live use, precomputed graphs allow LLM
agents to understand the user’s surroundings. Tools like Niantic’s
Visual Positioning System (VPS) [48] can estimate a user’s precise
position relative to the scene graph. For this study, we manually
captured all scenes. However, we believe our offline scene under-
standing pipeline could scale to large pre-scanned datasets already
available through platforms like VPS, Google Street View [35], and
Geospatial API [34]. For instance, Niantic VPS currently supports
over 1 million scanned locations [72]. Leveraging such resources
would enable scalable deployment of ImaginateAR.

4.2 Dynamic Asset Generation

Running 3D generation models directly on mobile devices is com-
putationally prohibitive. To enable fast AR asset creation (Design
Goal 2), we deploy a private web server that generates 3D models
remotely based on users’ speech commands. For example, a user
might say, “Place a dragon perched on the lamppost, prompting the
server to return a corresponding textured mesh of a dragon.

To generate assets, we first use a text-to-image model to synthe-
size an initial image, then apply DIS [82] to segment the foreground
subject from the background. While any text-to-image model can be
used, image quality does significantly impact the resulting 3D mesh.
Images with complex backgrounds, occlusions, or flat perspectives
often produce unrealistic models. To address this, we enhance user
prompts using GPT-40 mini [76], which expands them with clarify-
ing keywords (e.g., “white background”) to improve visual clarity
and depth. We also provide the model with examples of good and
bad images. This step—prompt boosting—helps guide the generated
images to meet the requirements for reliable 3D reconstruction. To
further improve quality, we instruct Dall-E 2 [85] to edit only the
central region rather than generate the full image, encouraging a
fully visible, well-defined subject suitable for meshing. We then use
InstantMesh [117], an efficient single-image-to-3D model, to lift the
image into a fully textured mesh. Because asset generation relies on
external services, occasional outages may occur. In such cases, we
fall back to the original user prompt (without boosting) or switch
to Stable Diffusion Turbo [90] as a local text-to-image generator.
Figure 4 illustrates the full pipeline.

4.3 Real-World User Authoring

To support seamless in-situ AR authoring (Design Goal 3), we de-
veloped a mobile interface that enables speech-driven interactions
with advanced AI models. We built it using Unity 2022.3.33f1!,
ARFoundation 5.1.4 [104], and Niantic Lightship ARDK 3.5.0 [47].
We designed ImaginateAR to support five core interactions for
authoring an AR scene: brainstorming, model creation, placement,
editing, and removal. For each task, users can choose from three
levels of Al involvement (Design Goal 4): “manual”, where they
maintain full control; “Al-assisted”, where the system offers multi-
ple suggestions; and “Al-decided”, where Al autonomously executes

Lhttps://unity.com
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Figure 3: Results of the 3D scene understanding module. For each of the three scans—Vase, House, and Garden—we visualize the
input point cloud (left) and the final set of labeled 3D bounding boxes inferred by our scene understanding pipeline (right). We
also report the total time (in minutes) required to estimate the scene graph for each scan. Note that some bounding boxes may
be enclosed within others and may therefore be occluded.
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Figure 4: Example of 3D asset generation. Given a user prompt, we first apply prompt boosting, then use Dall-E 2 [85] to generate
a consistent image by editing the center region of a white canvas. The image is then lifted to 3D using InstantMesh [117]. The
‘Bad” example (right) illustrates a failure case because it would produce a partial 3D object (i.e., only the dragon’s head). Prompt

boosting helps avoid such incomplete generations.

the task and presents a single best option. To facilitate these in-
teractions, ImaginateAR employs three specialized LLM agents: a
Brainstorming agent for idea generation, an Action Plan agent for
interpreting user requests and structuring tasks, and an Assembly
agent for executing actions like asset placement. Al-assisted and
Al-decided modes share this LLM pipeline but differ in autonomy
and how results are presented to the user. Figure 5 illustrates the
interface and supported interactions.

Localization. Users begin by pointing their phone around to
localize to a nearby Point of Interest (POI)—a geotagged location—
using Niantic’s VPS. Once the system determines the user’s position,
it retrieves the corresponding precomputed scene graph, providing
a structured representation of its surroundings for the LLM agents.
ImaginateAR then displays: “I'm ready! Let’s start decorating!”

Our system updates the retrieved scene graph to reflect the evolv-
ing AR experience. As users request new virtual content, it is added
to the local scene graph. Each object has a unique identifier (GUID),
a name, and position, rotation, scale, and bounding box dimensions
in Unity’s world coordinate system. The graph also includes an
on-screen visibility flag for handling spatially ambiguous queries
(e.g., “Place the T-Rex here”) and an action tag to track LLM-assigned
modifications awaiting execution. Together, this structure provides
essential context for iterative, LLM-driven interactions.

Brainstorming Ideas. Before editing the AR scene, users can
brainstorm using a post-it-style interface triggered by the light bulb
button. They can type ideas manually or ask Al for suggestions—
either in a single prompt (Al-decided) or through back-and-forth
conversation (Al-assisted). When speaking to the Brainstorming
agent, ImaginateAR captures audio using Unity’s microphone?,
transcribes it with Whisper [78], and prompts GPT-40 along with the
current scene graph to ground ideas in the user’s AR environment.
The post-it window is movable to prevent visual obstruction and
can be closed by tapping the button again.

Creating 3D Assets. Users can add virtual content by selecting
from a preset library or asking the Al to generate new assets. For
manual selection, tapping the book button in the bottom left opens
a scrollable grid of virtual objects. For Al-driven creation, users tap
the microphone button and describe what they want. The system
returns the top result (Al-decided), with optional left and right

Zhttps://docs.unity3d.com/ScriptReference/Microphone.html

arrows to browse alternatives (Al-assisted). To support Al-assisted
creation, ImaginateAR runs three asset generators in parallel, each
producing a distinct asset aligned with the user’s request.

If Al creation is used, ImaginateAR transcribes the user’s speech
and sends it—along with the current scene graph—to the Action Plan
agent. This agent assigns each virtual object an action tag: (1) none
(no change), (2) remove, (delete from the scene), (3) update (mod-
ify properties like position, rotation, or scale), (4) create_resources
(instantiate a preset model), (5) create_persistent (load a previously
generated model), or (6) create_new (request a new mesh from the
remote asset generation server). ImaginateAR then either retrieves
an existing model (create_resources, create_persistent) or generates
a new one remotely (create_new). The assets are added to the scene
to compute spatial properties like bounding box dimensions.

Arranging Virtual Content. Users can place, modify, and re-
move virtual objects either manually or with AI tools. For manual
placement, users tap the ‘Place Object’ button to position a selected
model at the blue visual indicator, which marks where a ray from
the center of the screen intersects ARDK’s live mesh [70] (i.e., the
estimated geometry of the real world). Tapping on a placed object
opens an editing window for adjusting position, rotation, and scale
(manual modification) or deleting the object (manual removal).

In Al mode, users can issue verbal commands such as “Put a
silly hat on the statue.” The Assembly agent interprets action tags
assigned by the Action Plan agent and determines how to arrange
content. The Assembly agent uses each object’s transform, along
with its minimum and maximum bounds (computed via a BoxCol-
lider), for spatial reasoning—such as aligning the top of a statue
with the base of a silly hat or scaling a T-Rex to appear larger
than nearby objects. It determines each object’s placement, rota-
tion, and scale to make it look realistically situated in the real-
world scene. The agent then performs Al-decided placement (for
create_resources, create_persistent, and create_new tags),
modification (update), or removal (remove), displaying the top re-
sult by default. Users can use the left and right arrows to browse
alternative placement, modification, or removal options (Al-assisted
mode), generated by three parallel Assembly agent (LLM) calls.

Example Al Creations. During both the technical evaluation
and user study, users had access to the full set of features. Figure 7
showcases AR scenes authored by the research team, while Figure 11
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Figure 5: Different screen captures of the ImaginateAR’s mobile interface showing the UI layout and functionalities. Users can
access manual, Al-assisted, and AI-decided modes across different features through buttons on the screen.

highlights participant-created scenes, often composed using a mix
of Al and manual tools. To isolate the performance of ImaginateAR’s
Al components, we also captured examples generated entirely by
Al—without any manual input from participants—in Figure 12.

5 Technical Evaluation

We conducted a technical evaluation of ImaginateAR to assess the
performance of its core components. First, we measured component-
level latency to evaluate its feasibility for in-situ, real-time author-
ing (Table 1). Across 50 trials, our system averaged 33.92 + 5.83
seconds—substantially faster than prior systems like LLMR [26],
which reports 90.98 + 24.88 seconds in an empty VR scene and
49.16 + 7.87 seconds in a virtual bathroom, though with the caveat
that its latency primarily stems from iterative refinement, whereas
ours is due to asset generation. Next, we compared our two key tech-
nical contributions—scene understanding and asset generation—
against state-of-the-art baselines. Finally, we conducted a proof-
by-demonstration to illustrate that ImaginateAR can scale across
diverse outdoor environments.

Table 1: Latency analysis of key components in ImaginateAR.
We report mean + standard deviation (in seconds) for each
pipeline step, averaged over 50 trials.

Component Time

Prompt Boosting 2.53s £ 0.91s

Image Generation 12.53s + 2.48s

Background Removal ~ 0.04s + 0.002s

Image to Mesh 9.14s + 0.08s
In-App LLM Agents 9.68s + 1.24s
Total 33.92 + 5.83s

5.1 Scene Understanding Pipeline

We evaluated our scene understanding pipeline on five distinct out-
door scenes. Because existing outdoor benchmarks primarily focus
on driving scenarios [17, 30], they are unsuitable for our purposes.

We therefore captured our own data and generated ground truth
scene graphs by manually labeling each scene. Each node in a graph
represents an object as a 3D bounding box and a human-defined
semantic label. One member of the research team performed the
initial labeling, and two others reviewed it for bias and accuracy.

To create these ground truth graphs, we developed a custom an-
notation tool that loads point clouds and allows users to brush over
points using different colors and brush sizes. This lets users assign a
unique color to each object and define its semantic label, producing
a structured scene graph. Using this dataset, we evaluated how well
different methods detect and describe objects. To compute metrics,
we used the Hungarian algorithm to match predicted bounding
boxes to ground truth boxes based on Intersection over Union (IoU).
A match was counted as a true positive if IoU > 0.25.

We report the following metrics: mean Recall, computed as
the average per-scene Recall (true positives over ground truth in-
stances), and mean Semantic Similarity (mean SS), the average
cosine similarity between CLIP [83] embeddings of ground truth
and predicted labels for true positives. We also report total pre-
dicted masks (N) per method. Across all five scenes, there are 27
ground truth instances. Experiments using GPT-40 were repeated
five times with top, = 0.1 using the latest available model.

Table 2 ablates variants of the scene understanding pipeline.
The first row reports OpenMask3D [101] results using a 4,500-
class vocabulary from [123] to assign a label to each detected mask.
OpenMask3D shows strong recall, but the large number of predicted
masks suggests many may be redundant, creating distractors for
LLM agents. Ablation A replaces CLIP with GPT-40 and adds a
filtering step to reduce the number of masks. While this lowers
the total number of masks, it also reduces the number of correctly
predicted masks and semantic label quality. Ablation B incorporates
dense monocular depth in metric scale, improving both recall and
semantic similarity—suggesting that better visibility yields more
accurate crops. Ablation C reintroduces CLIP on the same inputs as
B but produces lower semantic scores, indicating that GPT-4o yields
more accurate labels. Finally, our full method adds a clustering
step to merge nearby masks with the same label, further reducing
redundancy and producing compact yet meaningful scene graphs.
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Figure 6: From left to right: bounding boxes from the ground truth, OpenMask3D [101], and our proposed method. OpenMask3D
predicts a large number of masks, resulting in excessive bounding boxes that over-represent the same scene objects. In contrast,
our method produces fewer, more accurate boxes. (Box colors are arbitrary and can be ignored.)

Table 2: Evaluation of 3D scene understanding pipelines. We build on OpenMask3D [101] to produce more compact scene
graphs. The benchmark includes five manually labeled scenes with 27 total ground truth bounding boxes. We report the total
number of predicted masks (N), mean Recall, and mean Semantic Similarity (mean SS) using a 0.25 IoU threshold. Rows A-C
are ablations: (A) adds GPT-40 labeling and initial mask filtering, (B) incorporates monocular depth, and (C) uses CLIP [83]
instead of GPT-40. GPT-4o0 results are averaged over five runs and reported as mean + standard deviation.

Components Used

Evaluation Metrics

Method Filtering  Monocular Depth ~ Labeling  Clustering N mean Recall T mean SS T
OpenMask3D [101] CLIP 752 0.800 0.738
Ablation A v GPT-40 59 0.508 0.659 (£ 0.008)
Ablation B v v GPT-40 60 0.558 0.791 (£ 0.010)
Ablation C v v CLIP 60 0.558 0.730

Ours 7 7 GPT-40 7 19(x 1) 0.622 (£0.087) 0.791 ( 0.073)

5.2 Asset Creation with Al

To evaluate the efficiency and quality of our text-to-3D genera-
tion pipeline, we leveraged T3Bench [39], a benchmark designed
to assess text-to-3D methods across varying scene complexities.
T3Bench provides standardized text prompts and computes a quality
score based on multi-view 2D renderings generated from 3D input
assets. It also includes benchmarking results for state-of-the-art
text-to-3D models, including ProlificDreamer [110], MVDream [93],
DreamFusion [81], and DreamGaussian [102].

We report official scores and timings for these methods in Table 3
and compare them against our strategy using the single objects
generation benchmark. Our method achieves sub-minute gener-
ation times—crucial for in-situ AR authoring—while maintaining
reasonable visual quality. Although our assets are slightly lower
in quality than those from ProlificDreamer and MVDream, they
outperform DreamFusion and DreamGaussian. However, higher-
quality models come at a significant cost: ProlificDreamer requires
240 minutes and MVDream 30 minutes per asset on a powerful
GPU, making them unsuitable for real-time AR. In contrast, our
approach balances speed and quality, enabling fast asset generation
while preserving usability—making it the most practical solution
for in-situ AR authoring. As 3D generative models continue to im-
prove in both speed and fidelity [114-116, 124], future work should
explore these evolving alternatives.

Table 3: Benchmark results comparing state-of-the-art text-
to-3D pipelines with our approach, evaluated on the T>Bench
dataset [39]. Prior methods are impractical for in-situ AR
authoring due to long runtimes. Our approach, combining
InstantMesh with Dall-E 2 and prompt boosting, achieves
sub-minute generation while maintaining quality.

Model Name | Time Quality T
DreamFusion [81] 30 min 249
ProlificDreamer [110] 240 min  51.1
MVDream [93] 30 min 53.2
DreamGaussian [102] 7 min 19.9

InstantMesh [117] + Dall-E 2 [75] | <1min  32.6

InstantMesh + Dall-E 2

+ Prompt Boosting (Ours) <lmin 348

5.3 Proof by Demonstration

To evaluate whether ImaginateAR scales across diverse outdoor
settings, we conducted a proof-by-demonstration study at 10 Points
of Interest (POIs) spanning five distinct sites in two cities. These
included statues, flower beds, trees, fountains, play structures, and
more. Figure 7 showcases example AR scenes created by the re-
search team using ImaginateAR. For instance, we authored a fairy-
tale in a backyard, a Mayan history lesson on a playground, and an
aquarium inside a public fountain—demonstrating ImaginateAR’s
adaptability across varied environments.
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Figure 7: Six example creations from our technical evaluation, situated in a park, schoolyard, playground, shopping center,
and backyard. Each scene was first generated with AI tools, then refined with light manual adjustments to reflect typical
ImaginateAR use. Some are whimsical (A, F), while others are educational (C, E) or playful (B, D).

6 User Study

To complement our technical evaluation, we conducted a three-
part within-subjects user study with 4 pilot participants and 20
study participants. This in-situ study took place in a public park
and aimed to: (1) explore the types of AR experiences users want
to author outdoors, (2) observe how and when users engage with
manual and Al-driven features, and (3) identify current limitations
and future opportunities in Al-infused AR authoring.

6.1 Participants

We recruited participants via mailing lists and snowball sampling,
screening them through a demographic questionnaire on age, gen-
der, and experience with 2D/3D creativity tools, AR technologies,
and Al chat systems. To be eligible, participants had to be at least
18 years old with no visual or auditory impairments. From 147
respondents, we invited 34 to balance demographic diversity and
prior experience; 24 participated in the study (4 in pilot sessions).
Participants ranged from 18 to 61 years old (M =35, SD =11.8)
and identified as 33.3% female, 58.3% male, and 8.3% non-binary.
Half had no prior experience with 3D creativity tools, while 25.0%
were slightly familiar, 12.5% very familiar, and the remainder evenly
split between moderately familiar and familiar. In AR, 4.2% were un-
familiar, 33.3% moderately familiar, and the rest evenly distributed
across slightly familiar, familiar, and very familiar. AI chat systems
were more widely used: 12.5% were familiar, 37.5% very familiar,
and the remainder evenly divided between slightly and moderately
familiar. Participants received a £50 gift card for their time.

6.2 Procedure

Our in-person study took place in a busy public park featuring
varied terrain, including grass, pavement, stairs, a shed, and trees.
This complex setting allowed participants to interact with diverse
real-world objects while testing ImaginateAR’s adaptability. Study

sessions were recorded, capturing participants’ phone screens and
audio for later analysis. We collected both quantitative and quali-
tative data through surveys and semi-structured interviews, with
full study materials available in the Supplementary Materials. Each
2-hour session included an initial tutorial and three study phases:

Tutorial. The session began with participants watching a 5-
minute introductory video explaining the study and system features.
They then had the opportunity to ask questions before proceeding.

Part 1: Comparison Task. As a novel outdoor AR authoring
tool, ImaginateAR raises open questions about AI’s role in the
authoring process. To explore when and how much Al involvement
users preferred, we first conducted a structured comparison before
allowing free-form creation. Participants began with a 3-minute
overview video before interacting with three system modes: (A)
manual, where users tapped the screen and physically moved to
manipulate the AR scene; (B) Al-assisted, where the Al suggested
options but users made final decisions; and (C) Al-decided, where
the Al autonomously generated a single output. They performed
five core AR authoring tasks—(1) brainstorming, (2) object creation,
(3) placement, (4) modification, and (5) removal—across all three Al
modes, completing 15 trials (1A-5C; see Table 4). Mode order was
counterbalanced using a Latin Square. After each trial, participants
completed a post-task questionnaire with UMUX-LITE [59], a two-
item usability measure adapted from SUS [15], and NASA-TLX [38]
ratings for mental demand, performance, effort, and frustration. At
the end of this phase, we asked which mode participants preferred
overall and which they would use for additional features such as
music, sound effects, animations, event triggers, and object pinning.

Part 2: Free-Form Authoring Task. Beyond structured com-
parisons, observing how and what users create without researcher
intervention is critical—and only possible with a fully functional
prototype. In this phase, participants used the full ImaginateAR
system to freely author AR scenes of their own imagination for
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Table 4: The three AI modes and five features (15 total trials) participants engaged with in Part 1 of the study.

Feature A: Manual

B: Al-Assisted

C: Al-Decided

Brainstorming Ideas in the app.

User either thinks aloud or writes down ideas ~ User converses with LLM to collaboratively
come up with idea(s). User chooses final idea.

Single-turn communication with LLM for
ideation.

User searches for and selects 3D assets from

3D Asset Creation pre-existing database.

Al generates three different 3D assets, of
which the user selects one.

Al generates and selects a single 3D asset.

User moves the cursor by aiming the camera,

Object Placement then taps to place the object.

Al determines three different positions to
place the object, of which the user selects one.

Al determines where to position the
newly-created object.

User taps to select the object, then moves

Object Modification around and taps buttons to edit its pose.

User asks LLM to edit the object’s pose. Al
determines three edit arrangements, of
which the user selects one.

User asks LLM to edit the object’s pose.
Al chooses the final arrangement.

Object Removal .
to remove it.

User taps on an object and then taps a button ~ User asks Al to remove object(s). Al shows
three possibilities, of which the user selects one.  final removal(s).

User asks Al to remove object(s). Al chooses the

10-30 minutes. Afterward, they completed the Creativity Support
Index (CSI) [23] questionnaire and provided qualitative feedback
on ImaginateAR’s perceived usability and creativity support.

Part 3: Brainstorming and Co-Design. Lastly, we conducted
a semi-structured interview to gather insights on participant ex-
periences, preferred features, and ideas for system improvement.
We prepared 11 qualitative questions covering what they created,
their workflow choices, trade-offs between manual and Al-driven
authoring, and desired future enhancements. Follow-up questions
were asked based on responses, aiming to identify ImaginateAR’s
limitations and opportunities for future development.

6.3 Analysis

We analyzed data from three sources: questionnaire responses, ses-
sion observations, and interview transcripts. Quantitative data were
examined using a Friedman test, followed by Wilcoxon signed-rank
tests with Holm’s sequential Bonferroni correction for pairwise
comparisons. Qualitative data were analyzed using reflexive the-
matic analysis [13, 14]. The first author developed an initial code-
book, which was refined collaboratively with another researcher.
The final codebook comprised 56 codes, applied to 412 participant
quotes and reviewed by an additional researcher.

7 Results

We first present findings from structured comparison tasks—
including perceived usability, task load, and creativity support—to
understand how different levels of Al involvement affect AR author-
ing. Next, we analyze free-form authoring behaviors to offer deeper
insight into how users naturally engage with ImaginateAR and the
types of AR experiences they create. Finally, we synthesize key
themes from qualitative feedback, highlighting user preferences,
expectations around Al collaboration, and opportunities for design-
ing future Al-powered AR authoring tools. Participant quotes have
been lightly edited for clarity and concision.

7.1 Comparing Levels of Al Involvement

In Part 1, we quantitatively compared (A) manual, (B) Al-assisted,
and (C) Al-decided modes across five core AR authoring tasks:
brainstorming, object creation, placement, modification, and re-
moval. Post-trial questionnaires measured usability (UMUX-LITE)
and task load (NASA-TLX), with Table 5 showing overall results

and Figure 8 highlighting significant differences. This phase aimed
to establish an initial comparison of Al involvement across tasks.

Usability. UMUX-LITE scores showed no significant differences
in overall usability across Al modes. However, analyzing individual
questions revealed task-specific differences in how well each mode
met participants’ needs. Friedman tests found significant differences
for brainstorming (y*(2,N = 20) = 6.58, p < 0.05) and object
modification (y%(2, N = 20) = 13.07, p < 0.01), but not for other
tasks. Post-hoc Wilcoxon signed-rank tests revealed that Al-assisted
(V =151,p < 0.05) and Al-decided (V = 165, p < 0.05) modes better
met user requirements for brainstorming than manual. Conversely,
manual outperformed Al-assisted (V = 11, p < 0.05) and Al-decided
(V = 23,5, p < 0.05) for object modification. For the ease-of-use
question, no significant differences were observed across modes.

Task Load. NASA-TLX scores showed a significant difference for
brainstorming (y?(2, N = 20) = 7.21, p < 0.05), with manual mode
inducing significantly higher overall task load than Al-decided (V =
21, p < 0.05). We also examined the mental demand, performance,
effort, and frustration components separately, as these dimensions
were particularly relevant to our study.

Mental Demand. No significant differences in mental demand
were found across modes, indicating no evidence that any particular
mode was more mentally demanding than others.

Performance. Object modification performance differed signifi-
cantly across modes (y?(2, N = 20) = 11.29, p < 0.01), with manual
outperforming Al-assisted (V = 82, p < 0.01) and Al-decided
(V =88, p < 0.01).

Effort. Object creation effort differed significantly across modes
(¥%(2,N = 20) = 9.14, p < 0.01), with manual requiring signifi-
cantly less effort than both Al-assisted (V = 41.5, p < 0.05) and
Al-decided (V = 36, p < 0.05). When asked why, participants noted
that while AI features demanded less active input and decision-
making, they still had to wait for system responses—suggesting
they equated effort with overall task duration.

Frustration. Frustration during object modification varied sig-
nificantly (y?(2, N = 20) = 8.39, p < 0.05), with manual mode
causing less frustration than Al-assisted (V = 45, p < 0.05).

Overall Preference. After completing all trials, 12 participants
preferred manual mode, 10 favored Al-assisted, and 2 equally pre-
ferred both (P5, P16). Participants appreciated the manual mode for
its control (10/20) and precision (9/20), helping them create scenes
that more precisely matched their vision. Al-assisted was valued for
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Table 5: Usability (UMUX-LITE, on the left) and task load (NASA-TLX, on the right) data collected in Part 1. We report average
+ standard deviation. For statistically significant data, we also provide a plot.

Feature A B C

Brainstorming Ideas  66.2 + 16.4  76.8+7.4 754 +10.6

Creating Objects 69.8+11.2 70.8+122 67.9+13.2

Modifying Objects 73.0£16.0 66.2+149 68.1+135

Placing Objects 722+153  70.6+109 67.6 +15.9

Removing Objects 79.2+16.7 809+86 79.5+124
UMUX-LITE

Comparison of Meet Requirement Scores
for Brainstorming

Comparison of Meet Requirement Scores
for Modifying Objects

Feature A B C

Brainstorming Ideas  48.6 £ 20.3 40.2+20.2 37.3 £18.0

Creating Objects 275+123 338+120 350%122

Modifying Objects 30.5+15.6 32.0+150 34.1+ 149

Placing Objects 343+182 288+127 332+£132

Removing Objects 241+145 248+135 23.2+145
NASA-TLX

Comparison of NASA TLX Scores
for Brainstorming
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Figure 8: Boxplots of significant results from Part 1 quantitative data. Higher values indicate better outcomes for Meet
Requirements, while lower values are better for NASA-TLX, Performance, Effort, and Frustration scores.

fostering creativity (6/20) and offering multiple Al-generated op-
tions for review (5/20). Al-decided was least favored, as participants
found it “too rigid and deterministic” (P5), though some acknowl-
edged its ability to quickly generate results (4/20) and reduce the
mental effort of decision-making (4/20).

Authoring Preferences for Additional Features. Participants
proposed future features and indicated their preferred Al mode
for each, including background music, sound effects, animations,
event triggers, and object pinning. Preferences are summarized
in Figure 9. Overall, participants favored manual mode for tasks
requiring fine-grained control, such as pinning objects to specific
parts of real-world surfaces, and preferred Al-assisted mode for
creative, generative tasks like adding sounds and animations.

Summary. While Al-assisted mode was expected to be the most
preferred, participants’ preferences varied across tasks due to trade-
offs between speed, creativity, and precision. Al-assisted was appre-
ciated for generating creative options with less decision-making,
but manual mode was valued for precise adjustments, such as fine-
tuning object placement, despite requiring more active input and

Preferences for additional features between
Systems Al Bl C

15
10
0 R
0

Music Sound Animations Event&  Pinning
Generation Effects Triggers Virtual Objs

Figure 9: A bar graph showing participant preferences for
level of Al involvement across proposed additional features.

time. Al-decided was helpful for brainstorming but lacked the con-
trol needed for tasks driven by specific user intent. These findings
suggest that future Al-powered AR authoring tools should support
all three modes, enabling users to adjust automation and control
based on their needs at different stages of the authoring process.
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7.2 Free-Form Authoring with ImaginateAR

In Part 2, participants freely authored AR scenes using the full Imag-
inateAR system for 10-30 minutes before providing quantitative
and qualitative feedback. Below, we present findings on creativity
support, followed by an analysis of what participants created and
how they used the system without researcher intervention.

Creativity Support. ImaginateAR received an average Creativ-
ity Support Index (CSI) score of 68.8 (SD = 18.0). CSI scores can be
mapped to educational grading scales [23], and since our study was
conducted in the UK, this corresponds to an ‘Upper Second-class
Honours’—the second-highest classification [52]. Participants rated
Results Worth Effort (M = 2.65, SD = 1.50) and Exploration (M =
2.50, SD = 1.24) as the most important factors in AR authoring.
On a 1-10 scale, ImaginateAR scored 6.65 (SD = 2.22) for Results
Worth Effort and 6.36 (SD = 2.17) for Exploration. The highest-rated
aspects of the system were Enjoyment (M = 7.71, SD = 1.65) and Ex-
pressiveness (M = 7.55, SD = 2.24). These results suggest participants
valued the ability to explore and achieve meaningful outcomes—
well-supported by ImaginateAR—while also finding the experience
engaging and expressive. See Figure 10.

Participant Creations. All participants successfully authored
at least one AR scene. See Figure 11 for all 24 creations. These
ranged from “a sphinx and a pyramid rising from the ground” (P6)
to “a cat chasing a row of yellow ducks” (P16) and “animals drinking
coffee while watching a spaceship launch” (P19). Some built whimsi-
cal scenes for general audiences (7/20), while others designed for
friends (5/20) or family (3/20). A few explored more story-driven
experiences (4/20). Regardless of intent, 14 out of 20 participants
explicitly mentioned having fun while using ImaginateAR. The va-
riety of creations suggests that ImaginateAR effectively supported
a wide range of authoring goals, demonstrating both flexibility and
robustness in real-world use.

Relative Creativity Support Creativity Support
Factor Importance Scores by Factor
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Figure 10: Left: Average number of times each CSI factor [23]
was selected as more important than another. Participants
rated Results Worth Effort and Exploration as most impor-
tant, with Immersion rated significantly lower than all other
factors. Right: The scores participants gave ImaginateAR by
factor. Participants found ImaginateAR enjoyable and ex-
pressive, but not necessarily immersive.

Authoring Strategies with ImaginateAR. Most participants
(18/20) preferred a mix of Al and manual tools. Typically, they
began with Al-assisted mode to create a “blueprint layout” (P5),
followed by “manually tuning the scene as needed” (P6). Al features
were praised for enhancing creativity (20/20), flexibility (16/20), and
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expressiveness (3/20), though some found them “too creative” (P5),
leading to unexpected or undesired results (7/20). Others noted
subpar asset quality (7/20) and slow generation times (3/20).

Manual tools were valued for their control, precision, and sense
of ownership (19/20), as well as ease-of-use (7/20). However, manual
editing was also seen as time-consuming and laborious (12/20), re-
quiring “physically moving and pressing many buttons” (P15). Some
participants found selecting models from a preset list creatively
limiting (4/20), while others struggled with tapping accuracy in
busy environments due to “fat finger” issues (3/20).

Two participants diverged from this hybrid workflow: P2 skipped
manual mode entirely, describing Al outputs as “fun and creative,
even when inaccurate” and arrangements “correct enough”. P19
avoided Al tools altogether due to slow generation times. Yet when
asked how they would ideally use ImaginateAR once Al and manual
modes improved, all 20 participants indicated they would prefer a
mix of both. As P4 put it: “Al helped me be more creative and quickly
place objects. But even when it was right, I still wanted to tweak things
manually. It felt more rewarding when I had the final say.”

Similar to Part 1, participants preferred the freedom to use Al and
manual tools as needed. For brainstorming, however, participants
relied solely on the Al agent. Eleven found it helpful, particularly
when stuck or unsure what to create next. They especially appreci-
ated how the agent suggested ideas aligned with their environment
or theme. P20, for instance, began with a vague Sci-Fi idea and
found the Al helpful in “refining my idea into something more spe-
cific and creative”, which led to creating an alien and a robot. Still,
several participants (7/20) wished the agent could do more—holding
a back-and-forth conversation (5/20), asking clarifying questions
(4/20), and eventually generating an entire scene once the idea
was fully formed (6/20). As P7 reflected, “The Al adds flexibility,
but also demands that you know exactly what you want and how to
describe it] pointing to the potential for more collaborative, guided
brainstorming and authoring workflows.

7.3 Brainstorming Future of ImaginateAR

In Part 3, participants shared ideas for improving ImaginateAR and
envisioned how they might use it in the future. Below, we synthesize
limitations they identified and their proposed enhancements.

Al Creativity. While participants agreed the Al was generally
more creative than they were, they differed on whether that cre-
ativity was actually beneficial. 13 participants appreciated the AT’s
inventive and surprising results—P2 remarked, “It gave me a hu-
manoid lion and a two-headed giraffe... I love the randomness of it.
I'm just excited to see what it will create next!” Others found the
Al “too creative” (P5), generating content that clashed with their
intent. For instance, P5 requested a fountain and received a pink
one—possibly because previous objects they had generated were
pink—when they had envisioned a typical stone fountain: “Creativ-
ity can be a double-edged sword.” P1 also raised concerns that an
unmoderated Al could produce inaccurate or even inappropriate
content, especially for children.

To manage Al creativity, participants proposed several ideas. P14
wanted the Al to clarify ambiguous requests through follow-up
questions, rather than making assumptions: “If I ask for a creature
but don’t specify the color, the Al should ask, ‘do you want it yellow,
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Figure 11: AR experiences created by participants (N,;o;=4; Ns;44=20) while interacting with the full ImaginateAR prototype
in Part 2. Users were encouraged to create freely without limitations. ‘PP’ denotes pilot participants and ‘P’ study participants.
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purple, or something else?” We should talk back and forth until both of
us are ready to build something.” P18 suggested a “creativity slider”
for more granular control over Al outputs. Participants also appre-
ciated being able to choose from multiple Al-generated options,
helping them “ignore results that don’t fit” (P8).

Creating Dynamic AR Scenes. Many participants wanted their
scenes to feel alive and reactive, not just static. They suggested
adding animations (8/20), music (5/20), and event triggers (3/20).
For example, P5 wanted a water fountain with flowing water, P17
imagined dogs running in circles, and P20 envisioned horror scenes
with eerie sounds: “That would make it more realistic, especially if
the rendering quality is more like a cartoon.” Additionally, P8 hoped
virtual creatures could respond to touch (e.g., a dog smiling when
petted), while P14 suggested NPC-like interactions where virtual
humans or animals could talk or bark back in a conversational
manner. Still, P18 felt the current features “cover the basics needed
to create a simple AR scene,” but hoped future improvements would
focus on Al generation quality and speed.

Sharing Creations. 11 participants expressed interest in sharing
their AR creations. Some preferred sharing photos or videos (P9,
P12, P16), while others (P6, P7, P20) wanted to distribute full AR
scenes for others to download and experience. P5, P7, and P19
proposed a searchable catalog of Al-generated models with user
ratings: “If I had a catalog, I could just type in ‘pink dolphin’ and
see what others have used. That would drive inspiration and save
me time” (P5). P7 added that ratings could help users assess model
quality before choosing. To further personalize shared assets, P3,
P6, and P16 suggested allowing users to customize elements like
color. Finally, P1 emphasized that public sharing could help enforce
content safety and appropriateness.

Al Explainability. Nine participants wanted clearer explana-
tions from the AI about its progress and actions. Currently im-
plemented messages like “Understanding Your Surroundings” and
“Creating 3D Models” were seen as too vague. As P4 explained, “In-
stead of just ‘thinking’ or ‘processing,’ a more detailed explanation of
what’s been done would be nice, just so I know the AI heard me right,
how much longer I have to wait, and what it will eventually do to
my environment.” Participants also wanted better feedback during
Al processing to know whether they could continue interacting,
such as looking around or making manual changes. That said, P18
cautioned against overloading users with information, suggesting
that even a brief log would help: “Long messages will go unread. Just
tell me what the Al heard and what it’s doing.”

Access Barriers. Participants also raised accessibility concerns
regarding speech input. P14 and P18 noted misrecognition of non-
standard accents (e.g., “bowl” interpreted as “ball”), while P5 high-
lighted issues for users with speech impairments or in noisy en-
vironments: “If kids are screaming in the background, it might be
easier not to speak out loud.” While speech input was chosen for its
naturalness, participants emphasized the importance of offering
alternatives to ensure broader accessibility.

Envisioning Future Use Cases. When asked where and how
they might use ImaginateAR in the future, participants proposed
a wide range of scenarios. Popular ideas included designing mini
or board games (P9, P13, P14, P15) and transforming mundane
environments—such as turning lecture halls into botanical gardens
or adding a beach to an office (P5, P7, P8). Some envisioned practical
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uses like visualizing furniture layouts (P2, P17) or using AR pets for
stress relief (P1, P3). Others imagined playful experiences, such as
hiding AR Easter eggs for friends (P4, P11) or creating immersive
horror games (P7, P20). P10 even envisioned placing themselves
inside the scene: “I want to wear a crown, sit on a throne in the middle
of a desert, and be surrounded by flowers.” Overall, participants were
excited to use ImaginateAR anywhere—from their homes (P2, P5)
to parks (P5) and outdoor landmarks (P19).

8 Discussion

ImaginateAR combines outdoor scene understanding, fast 3D asset
generation, and LLM-driven speech interactions to advance Al-
assisted AR authoring. Our study revealed that users often began
with Al to generate a creative scene blueprint, then refined it manu-
ally for greater control—enabling diverse, accurate, and expressive
creations. Here, we provide suggestions for Al-assisted AR author-
ing tool designs, discuss the broader implications of Al creativity
and assistance, and outline limitations and future directions.

8.1 Design Implications for AR Authoring Tools

Throughout the study, participants indicated preferences for Al use
and proposed a wide range of improvements and future features
for ImaginateAR. We summarize and expand on these suggestions.
What Role Should AI Play in AR Authoring Workflows?
Our key takeaway is that users expect a blend of Al-assisted and
manual tools when authoring AR environments—they want to
co-create with Al not just rely on it. While AI offers creativity
and expressivity, manual tools provide the control needed to fine-
tune scenes and feel ownership over the result. All but two partici-
pants combined both during free-form authoring: they reviewed
Al-generated blueprints, then refined one to better match their cre-
ative intent. Al sped up early prototyping, helping users bring ideas
to life with less active input and decision-making, while manual
adjustments enabled greater precision and reduced frustration by
offering a way to correct Al errors. We recommend that future
iterations of ImaginateAR continue supporting hybrid workflows,
consistent with human-AI design guidelines [5, 42]. Ultimately,
users seek outcomes that justify their effort—AR scenes that best
reflect their imagination—which often requires both the creative
freedom of generative Al and the precision of manual control.
How Much AI Creativity is Too Much? AT’s creativity can be
a double-edged sword—both engaging and frustrating. Some partic-
ipants enjoyed the AI’s playful interpretations—like P2’s whimsi-
cal two-headed giraffe—while others felt such outputs strayed too
far from their intent. This tension suggests ImaginateAR should
avoid extremes: being too rigid, where the Al follows only literal
instructions, or too free, where it produces imaginative but irrele-
vant content. Following the Human-Centered Artificial Intelligence
(HCAI) framework [94], we recommend giving users ways to adjust
Al creativity (e.g., a “creativity slider” akin to an LLM’s temperature
setting) while supporting rapid iteration so users stay in control.
What Might Future AR Authoring Look Like? Our find-
ings point to a future AR authoring workflow where users and Al
co-create through iterative conversation, refining ideas together
until both “agree” on what to build. Once aligned, the system could
generate a full scene blueprint. For example, a user might say, “Turn
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Figure 12: Examples of accurate and inaccurate Al-generated scene blueprints before any manual input. (A-C) show scenes that
align with user intent across object type, placement, and orientation, though users may have made later edits. (D-F) illustrate
common issues: clipped geometry (D), incorrect facing direction (E), and imprecise part-level placement (F).

this playground into a coral reef”, imagining an experience where
kids can explore and learn about marine life. The Al might suggest
creative details like, “Let’s add a surgeonfish and a parrotfish, since
they’re commonly found in coral reefs”, or ask clarifying questions
such as, “What color corals would you like?” rather than making as-
sumptions. This kind of dialogue lets users guide the creative direc-
tion without needing to specify every object or detail—alleviating
the burden of constant input and decision-making. The same work-
flow can extend beyond 3D assets to include music (e.g., sea breeze),
animations (e.g., fish flapping their fins), and event triggers (e.g.,
picking up corals that break). Once both parties feel ready, Al
agents can build the scene. To support this, AR authoring tools
need scene understanding to position, rotate, and scale multiple
objects appropriately—reducing the user’s workload of arranging
each asset manually. Users could then make quick manual edits to
fine-tune the result, and ideally, share it with others. While Imagi-
nateAR already supports conversational brainstorming, real-time
full-scene generation remains limited by current technology: even
our fast asset generation pipeline takes 20-30 seconds per model,
making scene-level creation too slow for interactive use. This vision
also aligns with prior work like LLMR’s Planner agent [26], which
also supports collaborative scene ideation—but primarily targets
VR and still struggles to generate complete scenes efficiently. How-
ever, as generative models continue to improve, conversational AR
authoring at scale may soon be possible.

8.2 Challenges in AlI-powered AR Authoring

This work contributes to both HCI and computer vision by integrat-
ing outdoor scene understanding and fast 3D asset generation into
a simple, speech-driven system for Al-assisted AR authoring. How-
ever, our study revealed limitations that impacted user experience.
For example, scene understanding sometimes lacked granularity,
leading to visual misalignments, while asset generation, though
significantly faster than prior work, still required around half a

minute—affecting perceived usability. Below, we reflect on key tech-
nical challenges. We also dig deeper into CV-specific challenges in
Sections 1-3 of the Supplementary Materials, including depth map
enhancement, scene understanding, and 3D asset generation.

Scene Understanding Accuracy and Granularity. We rep-
resent real-world objects as 3D bounding boxes to keep the scene
graph compact and make spatial reasoning easier for LLMs. How-
ever, this abstraction can limit precision in Al-generated scene
blueprints. For example, a sloped ground in our study environment
was enclosed in a tall bounding box. When users asked for virtual
objects to be placed on this surface, aligning to the bounding box’s
maximum y-value caused them to float near the bottom of the
slope, while using the minimum y-value led to clipping near the
top. Placement on irregular, multi-part shapes like the pig statue
in Figure 7A was also challenging. A hat worked reasonably well
by aligning its base to the statue’s bounding box top, but clothing—
intended for the body—was harder to position due to the lack of
part segmentation. Even with the hat, minor misalignments oc-
curred because the statue’s ears extended above its head, meaning
the maximum y-value did not match the intended placement point.
Figure 12 illustrates scenes created solely by Al including both
successful and unsuccessful examples. While 3D bounding boxes
offer an efficient abstraction, future work should explore richer
representations to support more precise interactions—such as di-
rectly leveraging depth maps [27] or point clouds [111]—though
these formats are less readily compatible with LLM-based pipelines
compared to textual scene graphs.

Speed and Quality of Asset Generation. In-situ AR author-
ing demands fast, high-quality 3D mesh creation. Although our
pipeline generated assets faster than prior work with minimal sac-
rifice of quality, participants still found the 30 second wait dis-
ruptive. Asset quality was also occasionally lacking: some mod-
els were flat (princess in Figure 7B), incomplete (knight missing
legs in Figure 7B), had holes (castle in Figure 7B), or lacked de-
tail (Mayan person in Figure 7C). Interestingly, some errors were
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viewed positively—P2 described a two-headed giraffe as “fun and
exciting”—but overall, more reliable asset quality is needed. At the
time of development, we used InstantMesh [117], then state-of-the-
art, but more capable models like LATTE3D [116], TRELLIS [115],
and Hunyuan3D [124] are emerging. Since ImaginateAR is modular,
these can be easily integrated.

Beyond Static Scenes. While ImaginateAR supports AR author-
ing across a wide range of static outdoor scenes, dynamic content
remains an open challenge. Our scene understanding pipeline relies
on pre-scans to reduce user burden and enable more complete spa-
tial understanding. We use scene graphs for their compact, textual
structure that LLMs can reason over—but they do not reflect real-
time changes, such as a moved bench or a person walking through
the scene. As a result, while we can place a hat on a statue, we can-
not place it on a moving person. Authoring truly dynamic scenes
would also require richer support for animation, sound, and interac-
tivity. Audio could be integrated using generative models [98] (e.g.,
AudioLDM [61], MusicLM [4]), and triggered events could build on
prior systems that generate code [20, 26, 31]. Animation, however,
is particularly challenging: most prior work uses simple scripted
motions [20, 26, 31] or assumes pre-rigged assets [44], which is
incompatible with our use of generated 3D models. Auto-rigging
remains unreliable, and low-quality animation risks breaking im-
mersion. Therefore, we chose to study animation needs in AR au-
thoring qualitatively (e.g., P5: “flowing water”). Future work should
explore how to incorporate dynamic changes and behaviors into
AR authoring [97] to further enhance creative flexibility.

System Latency. Latency remains a core challenge for in-
situ AR systems—users expect responsiveness and may find even
sub-minute delays disruptive, especially outdoors. While Imagi-
nateAR achieves significantly faster runtimes than prior systems
(i.e, 33.92 + 5.83 seconds), current speeds can still interrupt the
flow of in-situ authoring. Because true real-time performance re-
mains difficult to achieve, future tools should offer meaningful
feedback (e.g., progress indicators, estimated wait times) and sup-
port multitasking—such as manually editing objects while waiting
for Al responses. As generative models improve, latency will likely
decrease, though offloading to remote servers may remain neces-
sary given the limited computational power of today’s AR devices.

8.3 Limitations & Future Directions

This work has several limitations. First, we did not support multi-
user co-creation. Several participants expressed interest in sharing
or building scenes together, suggesting opportunities to study col-
laborative AR authoring [74]. Second, our user study was limited to
a single location. While our technical evaluation shows that Imagi-
nateAR can generalize to diverse outdoor settings, future studies
should explore a broader range of environments (and perhaps with
other demographics, such as children). Third, while ImaginateAR
currently runs on phones, future work could explore deploying
it on AR headsets, which may enable new interactions but also
raise challenges around social acceptability and physical comfort
during extended public use. Fourth, as discussed earlier, improving
scene understanding, asset quality, system latency, and support
for dynamic scene authoring remains important. Future scene un-
derstanding pipelines should also be evaluated on larger outdoor
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datasets. Finally, although ImaginateAR depends on precomputed
scene graphs, participants did not perform scanning themselves.
While the system is designed to scale with existing large-scale point
cloud datasets, future work could examine how users scan scenes
and how systems might better support that process [108].

9 Conclusion

We present ImaginateAR, a novel system that advances Al-assisted
AR authoring through outdoor scene understanding, fast 3D asset
generation, and LLM-driven speech interactions. Our technical eval-
uation and user study show that users can create diverse AR scenes
in different real-world settings. Challenges remain—including im-
proving scene understanding granularity, asset quality, latency, and
collaborative Al support—but this work takes a step toward making
personalized AR authoring as simple as speaking your imagination.
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