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Figure 1: ImaginateAR enables non-expert users to author personalized AR experiences through natural language interaction. 
After a location is pre-scanned and processed by our scene understanding pipeline (left), users can brainstorm, generate, and 
place virtual content on-site with AI assistance (right), and make manual adjustments as needed. 
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Abstract 
While augmented reality (AR) enables new ways to play, tell sto-
ries, and explore ideas rooted in the physical world, authoring 
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personalized AR content remains difficult for non-experts, often 
requiring professional tools and time. Prior systems have explored 
AI-driven XR design but typically rely on manually defined VR 
environments and fixed asset libraries, limiting creative flexibil-
ity and real-world relevance. We introduce ImaginateAR, the first 
mobile tool for AI-assisted AR authoring to combine offline scene 
understanding, fast 3D asset generation, and LLMs—enabling users 
to create outdoor scenes through natural language interaction. For 
example, saying “a dragon enjoying a campfire” (P7) prompts the 
system to generate and arrange relevant assets, which can then be 
refined manually. Our technical evaluation shows that our custom 
pipelines produce more accurate outdoor scene graphs and gener-
ate 3D meshes faster than prior methods. A three-part user study 
(N=20) revealed preferred roles for AI, how users create in free-
form use, and design implications for future AR authoring tools. 
ImaginateAR takes a step toward empowering anyone to create AR 
experiences anywhere—simply by speaking their imagination. 
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1 Introduction 
Augmented Reality (AR) can transform everyday spaces into inter-
active canvases, blending digital content with the physical world. 
Today, AR is used not just for entertainment, but also to bring people 
together through games like Pokémon GO [69], support location-
based education [51], and amplify social causes through public art 
and storytelling [95]. Yet, most AR content is created using pro-
fessional tools like Unity [105], Blender [11], and Lens Studio [96], 
requiring specialized skills and limiting who can create and what is 
possible. While this enables highly polished experiences, it leaves 
everyday users without a way to easily and creatively customize 
their surroundings with AR. Imagine if everyone had the power 
to create their own AR worlds—teachers could build interactive 
history lessons in a schoolyard, artists could install digital murals 
on city walls, and friends could fill a beach with dancing penguins. 

Although some consumer AR applications like Adobe Aero [2], 
IKEA Place [46], and LEGO AR Studio [56] allow users to create 
AR content, they rely on predefined assets and manual placement, 
limiting creative flexibility and expressivity. To address these limi-
tations, recent research has explored generative AI for authoring 
in extended reality (XR). For instance, systems like SceneCraft [43], 
3D-GPT [99], Ostaad [3], VRCopilot [121], LLMR [26], LLMER [20], 
and Dreamcrafter [107] integrate large language models (LLMs) 
for XR scene generation and editing via natural language interac-
tion. While promising, these systems primarily target manually 
defined environments and lack in-situ authoring, real-world scene 
understanding, and/or open-ended asset generation, hindering truly 
personalized AR creation. Furthermore, most scene understanding 
algorithms are trained on indoor data [21, 36, 50, 79, 101]—so even 
if prior XR systems sought to incorporate scene understanding, 

existing models are not readily applicable to outdoor use—despite 
outdoor AR applications having proven impactful [51, 69, 95]. 

Suppose anyone could build an AR scene simply by speaking 
to an AI. A child might turn their backyard into a medieval king-
dom by saying, “Place a pink castle here.” and “Add a fire-breathing 
dragon on the fence!” An urban planner could preview a structure 
with, “Place a five-story apartment building here.” and “Make it twice 
as tall!” And anyone could build just for fun. This is our vision for 
AR authoring: enabling users to create immersive scenes grounded 
in the real world by describing what they imagine. In this paper, 
we take a step toward that vision by supporting AR authoring in 
a wide range of static outdoor environments. We introduce Imag-
inateAR, the first mobile tool for AI-assisted AR authoring that 
generates and arranges virtual assets from speech input, facilitating 
their seamless integration into the physical world. ImaginateAR 
achieves this by pushing the boundaries of (1) outdoor scene un-
derstanding, (2) fast 3D asset generation, and (3) LLM-driven nat-
ural language interaction—each a significant challenge for fully 
adaptive AR. Together, these advances help bring generative scene 
authoring—previously confined to VR—into real-world AR. 

To address real-world scene understanding, we updated open-
vocabulary 3D instance segmentation models—typically trained on 
indoor data and reliant on user-specified queries—to function au-
tonomously outdoors. Specifically, we enhance OpenMask3D [101] 
with GPT-4o [77] for consistent, automatic outdoor semantic la-
beling and apply HDBSCAN [64] clustering to merge redundant 
object masks. This produces structured scene graphs composed of 
labeled 3D bounding boxes, enabling spatial reasoning in real-world 
contexts. To improve usability and ensure a more complete view of 
the environment, we perform scene understanding offline on pre-
scanned environments and retrieve the relevant scene graph at run-
time using a Visual Positioning System (VPS) [48], rather than requir-
ing users to scan live. For dynamic 3D mesh generation—essential 
for creativity and personalization—we contribute a pipeline that 
encourages well-formed AR assets (i.e., complete, volumetric, prop-
erly oriented, and scaled), while running significantly faster than 
prior methods. Our approach expands user input with GPT-4o, syn-
thesizes reference images using Dall-E 2 [75], segments foreground 
objects via DIS [82], and lifts them into 3D using InstantMesh [117]. 
Finally, a multi-agent LLM pipeline enables speech-driven interac-
tion: a Brainstorming agent suggests scene ideas, an Action Plan 
agent determines spatial relationships, and an Assembly agent up-
dates the scene graph for coherent placement. 

To evaluate ImaginateAR, we conducted a technical assessment 
of our scene understanding and asset generation pipelines, along 
with a three-part user study in a public park with 20 participants. 
Our scene understanding pipeline outperformed the base Open-
Mask3D [101] model and ablated variants of our pipeline, while 
our asset generation pipeline achieved comparable quality to state-
of-the-art methods but with a significantly faster, sub-minute run-
time. As part of our technical evaluation, we also conducted a 
demonstration-based assessment across varied outdoor scenes, show-
ing that ImaginateAR functions reliably beyond the user study set-
ting. In the user study, participants first explored three authoring 
modes—manual, AI-assisted, and AI-decided—to evaluate trade-offs 
between control and automation during different stages of AR au-
thoring. They then used ImaginateAR to freely design their own 
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AR experiences (Part 2), followed by a co-design session to brain-
storm future features (Part 3). Participants enjoyed interacting with 
ImaginateAR, asking it to “Put a dancing T-Rex on the grass” (P1) 
or “Make a helicopter hover over the shed” (P14). Across sessions, 
users preferred a hybrid approach—leveraging AI for rapid and 
creative scene generation while retaining manual control for fine-
tuned customization. AI assistance accelerated ideation and spatial 
arrangement, but participants often opted for manual refinement to 
ensure their creative intent was more precisely reflected in the final 
scene. We conclude by discussing current limitations and future 
directions for AI-assisted AR authoring. 

In summary, our contributions include: (1) ImaginateAR, a novel 
AI-assisted AR authoring tool that integrates real-world scene un-
derstanding, generative AI, and LLM-based reasoning to streamline 
content creation; (2) technical innovations in outdoor scene under-
standing, fast 3D asset generation, and a multi-agent LLM pipeline 
for speech interaction; and (3) insights into how users engage with 
AI-assisted AR authoring—including their balance of automation 
and control, free-form use, and desired future features. 

2 Related Work 
We situate our work at the intersection of HCI and computer vision 
(CV), drawing from research on AI-powered XR authoring, real-
world 3D scene understanding, generative AI for content creation, 
and AI assistance in creative workflows. 

2.1 AI-Powered XR Authoring 
Because it involves 3D modeling, programming, and spatial design, 
creating XR content is inherently challenging [7, 66]. To lower this 
barrier, commercial tools like Adobe Aero [2], Unity MARS [106], 
and Torch [103] offer direct manipulation interfaces for placing 
virtual objects, enabling users to manually design scenes, albeit 
without AI-driven automation or generation. Research prototypes 
such as Pronto [58], Rapido [57], and ARAnimator [120] simplify 
AR prototyping through sketches and demonstration-based input, 
though they primarily support 2D content. Other systems, such 
as SemanticAdapt [22], ARTiST [112], and Lindlbauer et al. [60], 
automate content arrangement based on scene semantics but focus 
on adaptive user interfaces rather than open-ended scene creation. 
In our work, we explore how generative AI and real-world scene 
understanding can further lower authoring barriers, taking a step 
toward enabling anyone to create any AR experience. 

Several recent systems have also explored using AI to streamline 
XR authoring. For instance, SonifyAR [98] generates context-aware 
sound effects in mobile AR by leveraging LLMs. Others, such as 
BlenderGPT [1], SceneCraft [43], and 3D-GPT [99], enable users to 
generate 3D models via natural language, which can later be ar-
ranged into virtual scenes—but they lack fast, in-situ authoring, lim-
iting on-site ideation and iteration. More comprehensive tools like 
Ostaad [3], DreamCodeVR [31], VRCopilot [121], Dreamcrafter [107], 
and LLMR [26] go further by allowing users to iteratively prompt 
LLMs to build up full XR scenes. While these systems demonstrate 
the potential of LLM-assisted XR content creation, they primar-
ily target VR and/or rely on predefined asset libraries, limiting 
expressivity, adaptability, and real-world interaction. Closest to 
our work, LLMER [20] extends LLMR to mixed reality, and Fang 
et al. [29] integrate scene graphs, LLMs, and AR to facilitate robot 

navigation programming. However, both systems rely on manually 
constructed scene representations rather than automated scene un-
derstanding models. Ultimately, no existing system fully supports 
in-situ, speech-driven AR authoring with real-world scene under-
standing and open-ended asset generation. Prior work has also 
largely overlooked outdoor AR authoring, despite its proven im-
pact in fun, education, public art, and social connection [51, 69, 95]. 

Building on this foundational work, we explore how outdoor 
scene understanding, fast 3D mesh generation, and LLM-driven 
speech interaction can help bring AI-assisted scene authoring—once 
limited to VR—into real-world AR. 

2.2 Real-World 3D Scene Understanding 
Understanding real-world environments is a fundamental challenge 
for AR and robotics applications [10, 16]. To seamlessly integrate 
virtual content into physical spaces, systems must capture both geo-
metric and semantic properties of a scene. Typically, this is achieved 
in two steps: first, a 3D map of the environment is built using 
cameras [67, 91], sometimes augmented with depth or IMU sen-
sors [25, 68]. Next, semantic labels are assigned through CV models 
trained on 3D datasets [24, 28], enabling object recognition [92, 101]. 
Beyond individual object detection, some systems structure this 
information into scene graphs [6, 55, 88, 109, 113], where objects 
are nodes and relationships (e.g., “a bench is next to a tree”) form 
edges. This structured representation enables high-level reasoning 
for context-aware applications, including ours. 

Recent advances in multimodal models, such as CLIP [83] and 
vision-language models (VLMs), have enabled open-world object 
detection [21, 36, 50, 79, 101], allowing models to recognize objects 
beyond predefined labels. This is critical for real-world use, as envi-
ronments vary widely—indoor spaces differ from outdoor settings, 
and even rural and suburban outdoor areas contain distinct objects. 
Recent efforts in open-vocabulary scene understanding have inte-
grated 3D cues directly into LLMs [45, 63, 118], enabling agents to 
perform grounding, question-answering, and captioning within 3D 
environments. While promising, most open-vocabulary segmenta-
tion models rely on query-based retrieval [101], identifying scene 
objects via user prompts or predefined vocabularies. This poses chal-
lenges for generating scene graphs: user prompts introduce latency 
during live graph construction for AR authoring, while defining 
a single comprehensive vocabulary for arbitrary scenes—needed 
for offline computation—is difficult. Furthermore, prior work has 
largely focused on indoor spaces, where object categories are more 
constrained and fundamentally different from those outdoors. 

As such, we explore how existing open-vocabulary 3D instance 
segmentation models could be updated for outdoor AR—enabling 
ImaginateAR to generate structured scene graphs of diverse environ-
ments through an automatic, offline scene understanding pipeline. 

2.3 Generative AI for Content Creation 
ImaginateAR leverages generative AI for fast, open-ended 3D asset 
creation, allowing users to verbally generate objects on demand— 
supporting creative flexibility and expressivity. Traditionally, 3D 
models are crafted by experts using professional tools, a time-
consuming process infeasible for everyday users. While generative 
models have significantly advanced in 2D content creation, enabling 
high-quality image generation from text prompts [32, 53, 85–87, 89], 



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Lee and Aleotti, et al. 

their extension to 3D remains an ongoing challenge. Diffusion-
based methods [40] have also improved realism in image synthe-
sis, even supporting controls such as image-based guidance and 
structured constraints like depth, sketches, and key poses [65, 122]. 
However, these techniques still focus on 2D outputs rather than 3D 
assets required for AR. 

Generating high-quality 3D content is significantly more com-
plex than image synthesis, requiring solutions that balance effi-
ciency and realism. Early text-to-3D models, such as DreamFu-
sion [81], required over 30 minutes on a powerful GPU [39] to 
generate a single asset, making them impractical for in-situ use. 
As an alternative, prior systems like LLMR [26] relied on large as-
set libraries (e.g., Sketchfab), which—while expansive—often lack 
imaginative content such as a “two-headed giraffe” (P2), limiting 
creativity. Today, techniques aim to accelerate 3D asset creation, 
including zero-shot generation [49] and single-image-to-3D ap-
proaches [12, 19, 41, 62, 117]. Among these, InstantMesh [117] en-
ables rapid 3D lifting (i.e., reconstructing a 3D shape from a 2D 
image) and texturing from a single image in seconds. To ensure 
fast and flexible content generation, ImaginateAR employs DALL-E 
2 [85] to synthesize a 2D image from speech input, then lifts it 
into 3D using InstantMesh. This pipeline generates a fully textured 
3D model in approximately 30 seconds—substantially faster than 
prior methods in our technical evaluation, and sufficient to sup-
port creative iteration in our user study. Generation speed remains 
a challenge, but 3D generative models are rapidly improving in 
both speed and fidelity [114–116, 124]. As these models advance, 
our pipeline can adopt faster or higher-quality components—like 
replacing InstantMesh—without major system changes. 

2.4 AI Assistance in Creative Workflows 
As a fully functional AI-infused AR authoring tool, ImaginateAR 
presents a unique opportunity for examining how AI can support 
creative expression in immersive, real-world environments. While 
we allow free-form use in our study, we also include a controlled 
investigation of varying levels of AI involvement to examine trade-
offs between automation and human agency—a longstanding con-
cern in HCI [5, 42, 94]. Prior work shows that while AI can enhance 
expressivity and efficiency, excessive automation may reduce user 
control or creative ownership [73, 94]. Although this tension has 
been studied in writing, design, and programming [8, 9, 18, 37, 100], 
its role in AR authoring remains underexplored. Our study helps 
fill this gap, uncovering not only what users want to create with 
ImaginateAR but also how AI can best assist them along the way. 

3 Design Goals for AI-Infused AR Authoring 
Our research is motivated by an overarching belief that AR au-
thoring tools should allow anyone to create anything, anywhere, 
removing technical barriers and making immersive content creation 
as effortless as speaking an idea aloud. Imagine a student in their 
schoolyard curious about ancient civilizations saying, “Construct 
a Mayan temple next to the swings.” and “Show a person in histori-
cal clothing next to it!”. After each request, interactive AR content 
should quickly appear, blending seamlessly into their surroundings. 
To pursue this vision, we synthesized the following design goals: 

G1: In-Situ AR Authoring Anywhere. Users should be able 
to create, modify, and iterate on AR content directly within their 
environment, treating their surroundings as a canvas for in-situ 
authoring. Prior XR authoring systems rely on manually defined 
and often VR-based environments [3, 20, 26, 29, 31], while scene 
understanding models typically target indoor spaces and require 
user queries or predefined vocabularies [50, 79, 101]. Instead, we 
need to update these models to autonomously interpret a wide 
range of outdoor scenes. 

G2: Generate High-Quality 3D Assets Quickly. To support 
creativity and maintain flow, users need visually compelling AR as-
sets without long waits. Traditional 3D modeling is time-consuming 
and technically demanding, and while generative models are im-
proving, they often sacrifice either quality or speed (e.g., Prolific-
Dreamer [110] takes over 240 minutes on a powerful GPU for a 
single asset [39]). Achieving in-situ AR authoring requires generat-
ing AR-ready 3D assets in seconds—not minutes or hours. 

G3: Simple Speech-Driven Interactions. AR authoring should 
feel natural and effortless, letting users create and modify scenes 
with simple voice commands. For example, in the Mayan temple 
scenario, a student might say, “Make the temple bigger” or “Remove 
the person.” To lower technical barriers, we need LLM-driven speech 
interactions—enabled by structured scene graphs for spatial context. 

G4: Adjustable AI Assistance. AI should support—not 
override—human creativity, offering just the right level of help 
while keeping users in control. Preferences for AI involvement vary 
across users and tasks [5, 42, 73, 94]. Additionally, when AI makes 
mistakes, users need clear ways to recover—such as re-prompting 
or direct manipulation. To support both flexibility and error recov-
ery, AR authoring systems should let users decide how much AI 
assistance they want and when, and provide manual tools. 

4 The ImaginateAR System 
Our goal is to explore how AI can help users bring their ideas to life. 
To support this, we developed ImaginateAR, a novel AI-assisted AR 
authoring tool that lets users create, arrange, and modify virtual 
content in diverse, static real-world environments using speech. 

The ImaginateAR system consists of three key components: (1) 
an offline scene processing module, (2) a remote asset generation 
server, and (3) a mobile AR interface. The scene understanding 
pipeline structures the environment into a scene graph—a compact 
textual representation of object labels and their 3D bounding box 
coordinates. When users request content that is not yet available, 
the server generates 3D assets on demand. The mobile interface 
lets users issue speech commands, adjust content manually, and 
visualize their ideas in-situ. At a high level, ImaginateAR retrieves 
the relevant scene graph, processes voice commands, interprets 
user intent, fetches or generates 3D assets as needed, updates the 
scene graph accordingly, and renders changes in the AR scene. We 
include all LLM and VLM prompts in the Supplementary Materials. 

4.1 Offline Scene Understanding 
To support in-situ AR authoring nearly anywhere (Design Goal 1), 
we update an open-vocabulary 3D instance segmentation model to 
operate autonomously in outdoor environments. 
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4.1.1 Background Information. 
We first introduce scene graphs and the OpenMask3D model [101], 
which serve as the foundation of our system. 

What is a Scene Graph? A scene graph is a structured textual 
representation of a visual scene, encoding semantic details such as 
object labels, locations, and spatial extents. This compact format 
is well-suited for processing by LLMs. Unlike prior approaches 
like ConceptGraphs [36], which include explicit relationship nodes 
(e.g., “next to” or “on top of ”), our scene graphs focus solely on 
individual objects and their spatial properties. Modeling inter-object 
relationships is left as future work. 

What is OpenMask3D? Our scene understanding method 
builds on OpenMask3D, a state-of-the-art system for open-
vocabulary 3D instance segmentation. Given an input point cloud 
and an RGB-D video with camera poses, OpenMask3D operates in 
two stages. First, the Class-Agnostic Mask Proposal (CAMP) network 
generates a pool of 3D binary masks, 𝑆𝐼 , where each mask repre-
sents a potential object instance by marking its corresponding 3D 
points in the point cloud with a value of 1. Second, a CLIP [83] em-
bedding is computed for every mask 𝑀 ∈ 𝑆𝐼 . The system performs 
a depth-based visibility check to identify frames where 𝑀 is highly 
visible. Visible points from these frames are used to prompt the 
Segment Anything Model (SAM) [54] at multiple scales, extracting 
image regions depicting 𝑀 . These regions are then fed into CLIP 
to generate embeddings, which are aggregated into a single vec-
tor per 𝑀 . At test time, users can query objects via text prompts, 
which are converted into CLIP embeddings and matched against 
the precomputed embeddings of all masks to retrieve relevant ob-
ject instances. Notably, OpenMask3D was trained and evaluated 
primarily on indoor datasets such as ScanNet [24]. 

However, we identified two main limitations for our use case. 
First, the CAMP module often produces an excessive number of 
masks—frequently over 120—making it difficult to construct com-
pact scene graphs that can be efficiently processed by LLMs. Second, 
relying on user-defined prompts during use introduces latency, as 
each query must be embedded and compared against the full set of 
mask embeddings. Precomputing scene graphs with a predefined 
vocabulary can avoid this cost but requires a comprehensive la-
bel set, which is difficult to define given the variability of outdoor 
scenes. Hence, OpenMask3D needs to be updated for outdoor AR. 

4.1.2 Our Process. 
We now describe our offline scene understanding pipeline, including 
how we capture point cloud data and adapt OpenMask3D to address 
key limitations. We also discuss the scalability of our approach. 

Scene capture. A key design choice in ImaginateAR is to rely 
on pre-scans of environments and process them offline, rather than 
running scene understanding models in real-time as users actively 
scan their surroundings. We chose this approach for three key 
reasons: first, it enhances ease of use, as live scene understanding 
requires users to manually and thoroughly scan their environments, 
introducing unnecessary friction. Instead, digital twins enable pre-
computed scene understanding, allowing instant retrieval of scene 
graph data relevant to the user’s location. Second, because users can-
not be expected to scan every detail, live scene analysis often results 
in incomplete context. In contrast, pre-scanned environments can 

offer a more comprehensive spatial understanding—enabling inter-
actions like placing objects behind the user or real-world structures, 
even if those areas were never in the camera view. Lastly, real-time 
scene understanding models typically perform worse than offline 
methods, especially in complex outdoor environments. That said, 
relying on pre-scans may limit scalability compared to live methods 
and may not reflect dynamic scene changes (e.g., a chopped-down 
tree or moving people), which we discuss later. 

To generate a 3D representation of a scene, we capture the envi-
ronment using a commercial depth-sensing device. In our experi-
ments, we used an iPhone 13 Pro, which has LiDAR, running our 
custom-built scanning app that records RGB images, depth maps, 
and camera poses. These data sources are integrated into a 3D point 
cloud, similar to commercial applications like Scaniverse [71] and 
Polycam [80]. Our method is device-agnostic and can be extended 
to Android devices running ARCore [33]. 

Pre-Processing. To ensure accurate scene understanding and 
protect user privacy, we apply several pre-processing steps to re-
fine captured data. Personally identifiable information (PII), such 
as faces and license plates, is removed using an off-the-shelf blur-
ring model [84]. We also enhance depth maps by filling holes (i.e., 
missing values) using a monocular depth model [119]. Because 
some regions lack depth due to sensor limitations, we infer relative 
monocular depth and re-scale it with valid LiDAR points to produce 
dense metric depth maps. 

Initial Mask Prediction. We use the pre-trained CAMP net-
work from OpenMask3D to generate an initial pool of binary masks, 
𝑆𝐼 , where each mask represents a potential object or object part. 
However, we observed some masks are small or redundant. Thus, 
we filter the pool by removing small and duplicate masks, and 
merging highly overlapping ones, resulting in a refined subset 𝑆𝑀 . 

Mask Classification. In this step, we infer a semantic label 
for each mask in 𝑆𝑀 . OpenMask3D’s CLIP-based strategy requires 
either generating scene graphs at test time (via user prompts) or 
using predefined vocabularies. In contrast, we classify each detected 
object using a vision-language model (VLM) [36]. We modify Open-
Mask3D’s frame selection strategy to select the image with the 
highest visibility of the object mask, using monocular depth maps 
to assess point visibility. From this image, we extract two crops: 
(1) a context crop (C𝑘 ), which includes surrounding scene details, 
and (2) an object crop (O𝑘 ), which isolates the object. These crops 
are computed only at OpenMask3D’s largest scale to better capture 
contextual information. We leverage GPT-4o [77] as the VLM to 
infer a semantic label from O𝑘 and C𝑘 , incorporating a running list 
of previously predicted labels to enforce consistency. This reduces 
synonym mismatches (e.g., standardizing “road” instead of allowing 
similar variations like “road surface”). We refer to this AI agent as 
the Object Classifier, responsible for generating structured semantic 
labels across diverse outdoor scenes (Figure 2). 

Semantic Point Cloud and Clustering. After assigning se-
mantic labels to instance masks, we generate a structured scene 
representation by storing 3D bounding boxes enclosing each mask 
in 𝑆𝑀 . However, 𝑆𝑀 may still contain multiple masks for the same 
object, especially when overlapping masks do not meet the thresh-
old for the prior filter. This redundancy can introduce duplicate 
instances in the final scene graph. To address this, we compute a 
final refined set of masks, 𝑆𝐹 , using semantic information from a 
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Figure 2: Diagram of the 3D scene understanding pipeline. Given an input point cloud, we first estimate 3D masks. Next, we 
assign a semantic label to each mask using a VLM and propagate the label to all points within the mask, producing a semantic 
point cloud. We then cluster nearby points with the same label to infer the final set of 3D masks, from which we extract 3D 
bounding boxes. For visualization, we show only the bounding boxes, not the underlying masks. The Pavement box is enclosed 
within the Road box and is therefore not visible. 

VLM. For each mask 𝑘 in 𝑆𝑀 , we propagate its semantic label to its 
associated 3D points, producing a semantic point cloud. Points not 
assigned to any mask are labeled as unknown and excluded from 
the final output. We then apply HDBSCAN [64] to cluster nearby 
points with the same label. This merges spatially close, semantically 
identical masks (e.g., object parts), producing a more compact set 𝑆𝐹 
compared to 𝑆𝑀 . For example, in Figure 2, the number of instances 
is reduced from 208 (𝑆𝐼 ) to 15 (𝑆𝑀 ) and finally to 6 (𝑆𝐹 ). 

Scene Graph Creation and Deployment. We construct a scene 
graph by storing semantic labels along with the minimum and 
maximum values of the 3D axis-aligned bounding boxes enclosing 
masks in 𝑆𝐹 . Since these graphs primarily encode static objects, they 
remain valid across multiple AR sessions and users, as transient 
elements (e.g., moving people) are typically absent from traditional 
point cloud reconstructions. Scene graphs are generated offline 
using a machine with an NVIDIA L4 GPU; while there is room for 
optimization, the full pipeline still completes in just a few minutes 
per scan (Figure 3). During live use, precomputed graphs allow LLM 
agents to understand the user’s surroundings. Tools like Niantic’s 
Visual Positioning System (VPS) [48] can estimate a user’s precise 
position relative to the scene graph. For this study, we manually 
captured all scenes. However, we believe our offline scene under-
standing pipeline could scale to large pre-scanned datasets already 
available through platforms like VPS, Google Street View [35], and 
Geospatial API [34]. For instance, Niantic VPS currently supports 
over 1 million scanned locations [72]. Leveraging such resources 
would enable scalable deployment of ImaginateAR. 

4.2 Dynamic Asset Generation 
Running 3D generation models directly on mobile devices is com-
putationally prohibitive. To enable fast AR asset creation (Design 
Goal 2), we deploy a private web server that generates 3D models 
remotely based on users’ speech commands. For example, a user 
might say, “Place a dragon perched on the lamppost,” prompting the 
server to return a corresponding textured mesh of a dragon. 

To generate assets, we first use a text-to-image model to synthe-
size an initial image, then apply DIS [82] to segment the foreground 
subject from the background. While any text-to-image model can be 
used, image quality does significantly impact the resulting 3D mesh. 
Images with complex backgrounds, occlusions, or flat perspectives 
often produce unrealistic models. To address this, we enhance user 
prompts using GPT-4o mini [76], which expands them with clarify-
ing keywords (e.g., “white background”) to improve visual clarity 
and depth. We also provide the model with examples of good and 
bad images. This step—prompt boosting—helps guide the generated 
images to meet the requirements for reliable 3D reconstruction. To 
further improve quality, we instruct Dall-E 2 [85] to edit only the 
central region rather than generate the full image, encouraging a 
fully visible, well-defined subject suitable for meshing. We then use 
InstantMesh [117], an efficient single-image-to-3D model, to lift the 
image into a fully textured mesh. Because asset generation relies on 
external services, occasional outages may occur. In such cases, we 
fall back to the original user prompt (without boosting) or switch 
to Stable Diffusion Turbo [90] as a local text-to-image generator. 
Figure 4 illustrates the full pipeline. 

4.3 Real-World User Authoring 
To support seamless in-situ AR authoring (Design Goal 3), we de-
veloped a mobile interface that enables speech-driven interactions 
with advanced AI models. We built it using Unity 2022.3.33f11 , 
ARFoundation 5.1.4 [104], and Niantic Lightship ARDK 3.5.0 [47]. 

We designed ImaginateAR to support five core interactions for 
authoring an AR scene: brainstorming, model creation, placement, 
editing, and removal. For each task, users can choose from three 
levels of AI involvement (Design Goal 4): “manual”, where they 
maintain full control; “AI-assisted”, where the system offers multi-
ple suggestions; and “AI-decided”, where AI autonomously executes 

1https://unity.com 

https://unity.com
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House: 13.5 min 

Shed Handrail GrassSidewalk Tree Roof 

Garden: 13.4 min 

Path Fence Tree trunkStone wall Grass Rock 

Fence post Potted plant Flower bedAdvertisement banner 

Sidewalk Planter Flowers 

Vase: 17 min 

Figure 3: Results of the 3D scene understanding module. For each of the three scans—Vase, House, and Garden—we visualize the 
input point cloud (left) and the final set of labeled 3D bounding boxes inferred by our scene understanding pipeline (right). We 
also report the total time (in minutes) required to estimate the scene graph for each scan. Note that some bounding boxes may 
be enclosed within others and may therefore be occluded. 
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Figure 4: Example of 3D asset generation. Given a user prompt, we first apply prompt boosting, then use Dall-E 2 [85] to generate 
a consistent image by editing the center region of a white canvas. The image is then lifted to 3D using InstantMesh [117]. The 
‘Bad” example (right) illustrates a failure case because it would produce a partial 3D object (i.e., only the dragon’s head). Prompt 
boosting helps avoid such incomplete generations. 

the task and presents a single best option. To facilitate these in-
teractions, ImaginateAR employs three specialized LLM agents: a 
Brainstorming agent for idea generation, an Action Plan agent for 
interpreting user requests and structuring tasks, and an Assembly 
agent for executing actions like asset placement. AI-assisted and 
AI-decided modes share this LLM pipeline but differ in autonomy 
and how results are presented to the user. Figure 5 illustrates the 
interface and supported interactions. 

Localization. Users begin by pointing their phone around to 
localize to a nearby Point of Interest (POI)—a geotagged location— 
using Niantic’s VPS. Once the system determines the user’s position, 
it retrieves the corresponding precomputed scene graph, providing 
a structured representation of its surroundings for the LLM agents. 
ImaginateAR then displays: “I’m ready! Let’s start decorating!” 

Our system updates the retrieved scene graph to reflect the evolv-
ing AR experience. As users request new virtual content, it is added 
to the local scene graph. Each object has a unique identifier (GUID), 
a name, and position, rotation, scale, and bounding box dimensions 
in Unity’s world coordinate system. The graph also includes an 
on-screen visibility flag for handling spatially ambiguous queries 
(e.g., “Place the T-Rex here”) and an action tag to track LLM-assigned 
modifications awaiting execution. Together, this structure provides 
essential context for iterative, LLM-driven interactions. 

Brainstorming Ideas. Before editing the AR scene, users can 
brainstorm using a post-it-style interface triggered by the light bulb 
button. They can type ideas manually or ask AI for suggestions— 
either in a single prompt (AI-decided) or through back-and-forth 
conversation (AI-assisted). When speaking to the Brainstorming 
agent, ImaginateAR captures audio using Unity’s microphone2 , 
transcribes it with Whisper [78], and prompts GPT-4o along with the 
current scene graph to ground ideas in the user’s AR environment. 
The post-it window is movable to prevent visual obstruction and 
can be closed by tapping the button again. 

Creating 3D Assets. Users can add virtual content by selecting 
from a preset library or asking the AI to generate new assets. For 
manual selection, tapping the book button in the bottom left opens 
a scrollable grid of virtual objects. For AI-driven creation, users tap 
the microphone button and describe what they want. The system 
returns the top result (AI-decided), with optional left and right 
2https://docs.unity3d.com/ScriptReference/Microphone.html 

arrows to browse alternatives (AI-assisted). To support AI-assisted 
creation, ImaginateAR runs three asset generators in parallel, each 
producing a distinct asset aligned with the user’s request. 

If AI creation is used, ImaginateAR transcribes the user’s speech 
and sends it—along with the current scene graph—to the Action Plan 
agent. This agent assigns each virtual object an action tag: (1) none 
(no change), (2) remove, (delete from the scene), (3) update (mod-
ify properties like position, rotation, or scale), (4) create_resources 
(instantiate a preset model), (5) create_persistent (load a previously 
generated model), or (6) create_new (request a new mesh from the 
remote asset generation server). ImaginateAR then either retrieves 
an existing model (create_resources, create_persistent) or generates 
a new one remotely (create_new). The assets are added to the scene 
to compute spatial properties like bounding box dimensions. 

Arranging Virtual Content. Users can place, modify, and re-
move virtual objects either manually or with AI tools. For manual 
placement, users tap the ‘Place Object’ button to position a selected 
model at the blue visual indicator, which marks where a ray from 
the center of the screen intersects ARDK’s live mesh [70] (i.e., the 
estimated geometry of the real world). Tapping on a placed object 
opens an editing window for adjusting position, rotation, and scale 
(manual modification) or deleting the object (manual removal). 

In AI mode, users can issue verbal commands such as “Put a 
silly hat on the statue.” The Assembly agent interprets action tags 
assigned by the Action Plan agent and determines how to arrange 
content. The Assembly agent uses each object’s transform, along 
with its minimum and maximum bounds (computed via a BoxCol-
lider), for spatial reasoning—such as aligning the top of a statue 
with the base of a silly hat or scaling a T-Rex to appear larger 
than nearby objects. It determines each object’s placement, rota-
tion, and scale to make it look realistically situated in the real-
world scene. The agent then performs AI-decided placement (for 
create_resources, create_persistent, and create_new tags), 
modification (update), or removal (remove), displaying the top re-
sult by default. Users can use the left and right arrows to browse 
alternative placement, modification, or removal options (AI-assisted 
mode), generated by three parallel Assembly agent (LLM) calls. 

Example AI Creations. During both the technical evaluation 
and user study, users had access to the full set of features. Figure 7 
showcases AR scenes authored by the research team, while Figure 11 

https://docs.unity3d.com/ScriptReference/Microphone.html
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Figure 5: Different screen captures of the ImaginateAR’s mobile interface showing the UI layout and functionalities. Users can 
access manual, AI-assisted, and AI-decided modes across different features through buttons on the screen. 

highlights participant-created scenes, often composed using a mix 
of AI and manual tools. To isolate the performance of ImaginateAR’s 
AI components, we also captured examples generated entirely by 
AI—without any manual input from participants—in Figure 12. 

5 Technical Evaluation 
We conducted a technical evaluation of ImaginateAR to assess the 
performance of its core components. First, we measured component-
level latency to evaluate its feasibility for in-situ, real-time author-
ing (Table 1). Across 50 trials, our system averaged 33.92 ± 5.83 
seconds—substantially faster than prior systems like LLMR [26], 
which reports 90.98 ± 24.88 seconds in an empty VR scene and 
49.16 ± 7.87 seconds in a virtual bathroom, though with the caveat 
that its latency primarily stems from iterative refinement, whereas 
ours is due to asset generation. Next, we compared our two key tech-
nical contributions—scene understanding and asset generation— 
against state-of-the-art baselines. Finally, we conducted a proof-
by-demonstration to illustrate that ImaginateAR can scale across 
diverse outdoor environments. 

Table 1: Latency analysis of key components in ImaginateAR. 
We report mean ± standard deviation (in seconds) for each 
pipeline step, averaged over 50 trials. 

Component Time 

Prompt Boosting 2.53s ± 0.91s 

Image Generation 12.53s ± 2.48s 

Background Removal 0.04s ± 0.002s 

Image to Mesh 9.14s ± 0.08s 

In-App LLM Agents 9.68s ± 1.24s 

Total 33.92 ± 5.83s 

5.1 Scene Understanding Pipeline 
We evaluated our scene understanding pipeline on five distinct out-
door scenes. Because existing outdoor benchmarks primarily focus 
on driving scenarios [17, 30], they are unsuitable for our purposes. 

We therefore captured our own data and generated ground truth 
scene graphs by manually labeling each scene. Each node in a graph 
represents an object as a 3D bounding box and a human-defined 
semantic label. One member of the research team performed the 
initial labeling, and two others reviewed it for bias and accuracy. 

To create these ground truth graphs, we developed a custom an-
notation tool that loads point clouds and allows users to brush over 
points using different colors and brush sizes. This lets users assign a 
unique color to each object and define its semantic label, producing 
a structured scene graph. Using this dataset, we evaluated how well 
different methods detect and describe objects. To compute metrics, 
we used the Hungarian algorithm to match predicted bounding 
boxes to ground truth boxes based on Intersection over Union (IoU). 
A match was counted as a true positive if IoU ≥ 0.25. 

We report the following metrics: mean Recall, computed as 
the average per-scene Recall (true positives over ground truth in-
stances), and mean Semantic Similarity (mean SS), the average 
cosine similarity between CLIP [83] embeddings of ground truth 
and predicted labels for true positives. We also report total pre-
dicted masks (N) per method. Across all five scenes, there are 27 
ground truth instances. Experiments using GPT-4o were repeated 
five times with topp = 0.1 using the latest available model. 

Table 2 ablates variants of the scene understanding pipeline. 
The first row reports OpenMask3D [101] results using a 4,500-
class vocabulary from [123] to assign a label to each detected mask. 
OpenMask3D shows strong recall, but the large number of predicted 
masks suggests many may be redundant, creating distractors for 
LLM agents. Ablation A replaces CLIP with GPT-4o and adds a 
filtering step to reduce the number of masks. While this lowers 
the total number of masks, it also reduces the number of correctly 
predicted masks and semantic label quality. Ablation B incorporates 
dense monocular depth in metric scale, improving both recall and 
semantic similarity—suggesting that better visibility yields more 
accurate crops. Ablation C reintroduces CLIP on the same inputs as 
B but produces lower semantic scores, indicating that GPT-4o yields 
more accurate labels. Finally, our full method adds a clustering 
step to merge nearby masks with the same label, further reducing 
redundancy and producing compact yet meaningful scene graphs. 
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Figure 6: From left to right: bounding boxes from the ground truth, OpenMask3D [101], and our proposed method. OpenMask3D 
predicts a large number of masks, resulting in excessive bounding boxes that over-represent the same scene objects. In contrast, 
our method produces fewer, more accurate boxes. (Box colors are arbitrary and can be ignored.) 

Table 2: Evaluation of 3D scene understanding pipelines. We build on OpenMask3D [101] to produce more compact scene 
graphs. The benchmark includes five manually labeled scenes with 27 total ground truth bounding boxes. We report the total 
number of predicted masks (N), mean Recall, and mean Semantic Similarity (mean SS) using a 0.25 IoU threshold. Rows A–C 
are ablations: (A) adds GPT-4o labeling and initial mask filtering, (B) incorporates monocular depth, and (C) uses CLIP [83] 
instead of GPT-4o. GPT-4o results are averaged over five runs and reported as mean ± standard deviation. 

Components Used Evaluation Metrics 

Method Filtering Monocular Depth Labeling Clustering N mean Recall ↑ mean SS ↑ 

OpenMask3D [101] CLIP 752 0.800 0.738 
Ablation A ✓ GPT-4o 59 0.508 0.659 (± 0.008) 
Ablation B ✓ ✓ GPT-4o 60 0.558 0.791 (± 0.010) 
Ablation C ✓ ✓ CLIP 60 0.558 0.730 
Ours ✓ ✓ GPT-4o ✓ 49 (± 1) 0.622 (± 0.087) 0.791 (± 0.073) 

5.2 Asset Creation with AI 
To evaluate the efficiency and quality of our text-to-3D genera-
tion pipeline, we leveraged T3Bench [39], a benchmark designed 
to assess text-to-3D methods across varying scene complexities. 
T3Bench provides standardized text prompts and computes a quality 
score based on multi-view 2D renderings generated from 3D input 
assets. It also includes benchmarking results for state-of-the-art 
text-to-3D models, including ProlificDreamer [110], MVDream [93], 
DreamFusion [81], and DreamGaussian [102]. 

We report official scores and timings for these methods in Table 3 
and compare them against our strategy using the single objects 
generation benchmark. Our method achieves sub-minute gener-
ation times—crucial for in-situ AR authoring—while maintaining 
reasonable visual quality. Although our assets are slightly lower 
in quality than those from ProlificDreamer and MVDream, they 
outperform DreamFusion and DreamGaussian. However, higher-
quality models come at a significant cost: ProlificDreamer requires 
240 minutes and MVDream 30 minutes per asset on a powerful 
GPU, making them unsuitable for real-time AR. In contrast, our 
approach balances speed and quality, enabling fast asset generation 
while preserving usability—making it the most practical solution 
for in-situ AR authoring. As 3D generative models continue to im-
prove in both speed and fidelity [114–116, 124], future work should 
explore these evolving alternatives. 

Table 3: Benchmark results comparing state-of-the-art text-
to-3D pipelines with our approach, evaluated on the T3Bench 
dataset [39]. Prior methods are impractical for in-situ AR 
authoring due to long runtimes. Our approach, combining 
InstantMesh with Dall-E 2 and prompt boosting, achieves 
sub-minute generation while maintaining quality. 

Model Name Time Quality ↑ 

DreamFusion [81] 30 min 24.9 
ProlificDreamer [110] 240 min 51.1 
MVDream [93] 30 min 53.2 
DreamGaussian [102] 7 min 19.9 
InstantMesh [117] + Dall-E 2 [75] < 1 min 32.6 

InstantMesh + Dall-E 2 
+ Prompt Boosting (Ours) < 1 min 34.8 

5.3 Proof by Demonstration 
To evaluate whether ImaginateAR scales across diverse outdoor 
settings, we conducted a proof-by-demonstration study at 10 Points 
of Interest (POIs) spanning five distinct sites in two cities. These 
included statues, flower beds, trees, fountains, play structures, and 
more. Figure 7 showcases example AR scenes created by the re-
search team using ImaginateAR. For instance, we authored a fairy-
tale in a backyard, a Mayan history lesson on a playground, and an 
aquarium inside a public fountain—demonstrating ImaginateAR’s 
adaptability across varied environments. 
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Figure 7: Six example creations from our technical evaluation, situated in a park, schoolyard, playground, shopping center, 
and backyard. Each scene was first generated with AI tools, then refined with light manual adjustments to reflect typical 
ImaginateAR use. Some are whimsical (A, F), while others are educational (C, E) or playful (B, D). 

6 User Study 
To complement our technical evaluation, we conducted a three-
part within-subjects user study with 4 pilot participants and 20 
study participants. This in-situ study took place in a public park 
and aimed to: (1) explore the types of AR experiences users want 
to author outdoors, (2) observe how and when users engage with 
manual and AI-driven features, and (3) identify current limitations 
and future opportunities in AI-infused AR authoring. 

6.1 Participants 
We recruited participants via mailing lists and snowball sampling, 
screening them through a demographic questionnaire on age, gen-
der, and experience with 2D/3D creativity tools, AR technologies, 
and AI chat systems. To be eligible, participants had to be at least 
18 years old with no visual or auditory impairments. From 147 
respondents, we invited 34 to balance demographic diversity and 
prior experience; 24 participated in the study (4 in pilot sessions). 

Participants ranged from 18 to 61 years old (𝑀 =35, 𝑆𝐷 =11.8) 
and identified as 33.3% female, 58.3% male, and 8.3% non-binary. 
Half had no prior experience with 3D creativity tools, while 25.0% 
were slightly familiar, 12.5% very familiar, and the remainder evenly 
split between moderately familiar and familiar. In AR, 4.2% were un-
familiar, 33.3% moderately familiar, and the rest evenly distributed 
across slightly familiar, familiar, and very familiar. AI chat systems 
were more widely used: 12.5% were familiar, 37.5% very familiar, 
and the remainder evenly divided between slightly and moderately 
familiar. Participants received a £50 gift card for their time. 

6.2 Procedure 
Our in-person study took place in a busy public park featuring 
varied terrain, including grass, pavement, stairs, a shed, and trees. 
This complex setting allowed participants to interact with diverse 
real-world objects while testing ImaginateAR’s adaptability. Study 

sessions were recorded, capturing participants’ phone screens and 
audio for later analysis. We collected both quantitative and quali-
tative data through surveys and semi-structured interviews, with 
full study materials available in the Supplementary Materials. Each 
2-hour session included an initial tutorial and three study phases: 

Tutorial. The session began with participants watching a 5-
minute introductory video explaining the study and system features. 
They then had the opportunity to ask questions before proceeding. 

Part 1: Comparison Task. As a novel outdoor AR authoring 
tool, ImaginateAR raises open questions about AI’s role in the 
authoring process. To explore when and how much AI involvement 
users preferred, we first conducted a structured comparison before 
allowing free-form creation. Participants began with a 3-minute 
overview video before interacting with three system modes: (A) 
manual, where users tapped the screen and physically moved to 
manipulate the AR scene; (B) AI-assisted, where the AI suggested 
options but users made final decisions; and (C) AI-decided, where 
the AI autonomously generated a single output. They performed 
five core AR authoring tasks—(1) brainstorming, (2) object creation, 
(3) placement, (4) modification, and (5) removal—across all three AI 
modes, completing 15 trials (1A–5C; see Table 4). Mode order was 
counterbalanced using a Latin Square. After each trial, participants 
completed a post-task questionnaire with UMUX-LITE [59], a two-
item usability measure adapted from SUS [15], and NASA-TLX [38] 
ratings for mental demand, performance, effort, and frustration. At 
the end of this phase, we asked which mode participants preferred 
overall and which they would use for additional features such as 
music, sound effects, animations, event triggers, and object pinning. 

Part 2: Free-Form Authoring Task. Beyond structured com-
parisons, observing how and what users create without researcher 
intervention is critical—and only possible with a fully functional 
prototype. In this phase, participants used the full ImaginateAR 
system to freely author AR scenes of their own imagination for 
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Table 4: The three AI modes and five features (15 total trials) participants engaged with in Part 1 of the study. 

Feature A: Manual B: AI-Assisted C: AI-Decided 

Brainstorming Ideas User either thinks aloud or writes down ideas 
in the app. 

User converses with LLM to collaboratively 
come up with idea(s). User chooses final idea. 

Single-turn communication with LLM for 
ideation. 

3D Asset Creation 
User searches for and selects 3D assets from 
pre-existing database. 

AI generates three different 3D assets, of 
which the user selects one. AI generates and selects a single 3D asset. 

Object Placement User moves the cursor by aiming the camera, 
then taps to place the object. 

AI determines three different positions to 
place the object, of which the user selects one. 

AI determines where to position the 
newly-created object. 

Object Modification 
User taps to select the object, then moves 
around and taps buttons to edit its pose. 

User asks LLM to edit the object’s pose. AI 
determines three edit arrangements, of 
which the user selects one. 

User asks LLM to edit the object’s pose. 
AI chooses the final arrangement. 

Object Removal User taps on an object and then taps a button 
to remove it. 

User asks AI to remove object(s). AI shows 
three possibilities, of which the user selects one. 

User asks AI to remove object(s). AI chooses the 
final removal(s). 

10–30 minutes. Afterward, they completed the Creativity Support 
Index (CSI) [23] questionnaire and provided qualitative feedback 
on ImaginateAR’s perceived usability and creativity support. 

Part 3: Brainstorming and Co-Design. Lastly, we conducted 
a semi-structured interview to gather insights on participant ex-
periences, preferred features, and ideas for system improvement. 
We prepared 11 qualitative questions covering what they created, 
their workflow choices, trade-offs between manual and AI-driven 
authoring, and desired future enhancements. Follow-up questions 
were asked based on responses, aiming to identify ImaginateAR’s 
limitations and opportunities for future development. 

6.3 Analysis 
We analyzed data from three sources: questionnaire responses, ses-
sion observations, and interview transcripts. Quantitative data were 
examined using a Friedman test, followed by Wilcoxon signed-rank 
tests with Holm’s sequential Bonferroni correction for pairwise 
comparisons. Qualitative data were analyzed using reflexive the-
matic analysis [13, 14]. The first author developed an initial code-
book, which was refined collaboratively with another researcher. 
The final codebook comprised 56 codes, applied to 412 participant 
quotes and reviewed by an additional researcher. 

7 Results 
We first present findings from structured comparison tasks— 
including perceived usability, task load, and creativity support—to 
understand how different levels of AI involvement affect AR author-
ing. Next, we analyze free-form authoring behaviors to offer deeper 
insight into how users naturally engage with ImaginateAR and the 
types of AR experiences they create. Finally, we synthesize key 
themes from qualitative feedback, highlighting user preferences, 
expectations around AI collaboration, and opportunities for design-
ing future AI-powered AR authoring tools. Participant quotes have 
been lightly edited for clarity and concision. 

7.1 Comparing Levels of AI Involvement 
In Part 1, we quantitatively compared (A) manual, (B) AI-assisted, 
and (C) AI-decided modes across five core AR authoring tasks: 
brainstorming, object creation, placement, modification, and re-
moval. Post-trial questionnaires measured usability (UMUX-LITE) 
and task load (NASA-TLX), with Table 5 showing overall results 

and Figure 8 highlighting significant differences. This phase aimed 
to establish an initial comparison of AI involvement across tasks. 

Usability. UMUX-LITE scores showed no significant differences 
in overall usability across AI modes. However, analyzing individual 
questions revealed task-specific differences in how well each mode 
met participants’ needs. Friedman tests found significant differences 
for brainstorming (𝜒 2 (2, 𝑁 = 20) = 6.58, 𝑝 < 0.05) and object 
modification (𝜒 2 (2, 𝑁 = 20) = 13.07, 𝑝 < 0.01), but not for other 
tasks. Post-hoc Wilcoxon signed-rank tests revealed that AI-assisted 
(𝑉 = 151, 𝑝 < 0.05) and AI-decided (𝑉 = 165, 𝑝 < 0.05) modes better 
met user requirements for brainstorming than manual. Conversely, 
manual outperformed AI-assisted (𝑉 = 11, 𝑝 < 0.05) and AI-decided 
(𝑉 = 23.5, 𝑝 < 0.05) for object modification. For the ease-of-use 
question, no significant differences were observed across modes. 

Task Load. NASA-TLX scores showed a significant difference for 
brainstorming (𝜒 2 (2, 𝑁 = 20) = 7.21, 𝑝 < 0.05), with manual mode 
inducing significantly higher overall task load than AI-decided (𝑉 = 
21, 𝑝 < 0.05). We also examined the mental demand, performance, 
effort, and frustration components separately, as these dimensions 
were particularly relevant to our study. 

Mental Demand. No significant differences in mental demand 
were found across modes, indicating no evidence that any particular 
mode was more mentally demanding than others. 

Performance. Object modification performance differed signifi-
cantly across modes (𝜒 2 (2, 𝑁 = 20) = 11.29, 𝑝 < 0.01), with manual 
outperforming AI-assisted (𝑉 = 82, 𝑝 < 0.01) and AI-decided 
(𝑉 = 88, 𝑝 < 0.01). 

Effort. Object creation effort differed significantly across modes 
(𝜒 2 (2, 𝑁 = 20) = 9.14, 𝑝 < 0.01), with manual requiring signifi-
cantly less effort than both AI-assisted (𝑉 = 41.5, 𝑝 < 0.05) and 
AI-decided (𝑉 = 36, 𝑝 < 0.05). When asked why, participants noted 
that while AI features demanded less active input and decision-
making, they still had to wait for system responses—suggesting 
they equated effort with overall task duration. 

Frustration. Frustration during object modification varied sig-
nificantly (𝜒 2 (2, 𝑁 = 20) = 8.39, 𝑝 < 0.05), with manual mode 
causing less frustration than AI-assisted (𝑉 = 45, 𝑝 < 0.05). 

Overall Preference. After completing all trials, 12 participants 
preferred manual mode, 10 favored AI-assisted, and 2 equally pre-
ferred both (P5, P16). Participants appreciated the manual mode for 
its control (10/20) and precision (9/20), helping them create scenes 
that more precisely matched their vision. AI-assisted was valued for 
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Table 5: Usability (UMUX-LITE, on the left) and task load (NASA-TLX, on the right) data collected in Part 1. We report average 
± standard deviation. For statistically significant data, we also provide a plot. 

Feature A B C 

Brainstorming Ideas 66.2 ± 16.4 76.8 ± 7.4 75.4 ± 10.6 
Creating Objects 69.8 ± 11.2 70.8 ± 12.2 67.9 ± 13.2 
Modifying Objects 73.0 ± 16.0 66.2 ± 14.9 68.1 ± 13.5 
Placing Objects 72.2 ± 15.3 70.6 ± 10.9 67.6 ± 15.9 
Removing Objects 79.2 ± 16.7 80.9 ± 8.6 79.5 ± 12.4 

UMUX-LITE 

Feature A B C 

Brainstorming Ideas 48.6 ± 20.3 40.2 ± 20.2 37.3 ± 18.0 
Creating Objects 27.5 ± 12.3 33.8 ± 12.0 35.0 ± 12.2 
Modifying Objects 30.5 ± 15.6 32.0 ± 15.0 34.1 ± 14.9 
Placing Objects 34.3 ± 18.2 28.8 ± 12.7 33.2 ± 13.2 
Removing Objects 24.1 ± 14.5 24.8 ± 13.5 23.2 ± 14.5 

NASA-TLX 

Figure 8: Boxplots of significant results from Part 1 quantitative data. Higher values indicate better outcomes for Meet 
Requirements, while lower values are better for NASA-TLX, Performance, Effort, and Frustration scores. 

fostering creativity (6/20) and offering multiple AI-generated op-
tions for review (5/20). AI-decided was least favored, as participants 
found it “too rigid and deterministic” (P5), though some acknowl-
edged its ability to quickly generate results (4/20) and reduce the 
mental effort of decision-making (4/20). 

Authoring Preferences for Additional Features. Participants 
proposed future features and indicated their preferred AI mode 
for each, including background music, sound effects, animations, 
event triggers, and object pinning. Preferences are summarized 
in Figure 9. Overall, participants favored manual mode for tasks 
requiring fine-grained control, such as pinning objects to specific 
parts of real-world surfaces, and preferred AI-assisted mode for 
creative, generative tasks like adding sounds and animations. 

Summary. While AI-assisted mode was expected to be the most 
preferred, participants’ preferences varied across tasks due to trade-
offs between speed, creativity, and precision. AI-assisted was appre-
ciated for generating creative options with less decision-making, 
but manual mode was valued for precise adjustments, such as fine-
tuning object placement, despite requiring more active input and 

Figure 9: A bar graph showing participant preferences for 
level of AI involvement across proposed additional features. 

time. AI-decided was helpful for brainstorming but lacked the con-
trol needed for tasks driven by specific user intent. These findings 
suggest that future AI-powered AR authoring tools should support 
all three modes, enabling users to adjust automation and control 
based on their needs at different stages of the authoring process. 
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7.2 Free-Form Authoring with ImaginateAR 
In Part 2, participants freely authored AR scenes using the full Imag-
inateAR system for 10–30 minutes before providing quantitative 
and qualitative feedback. Below, we present findings on creativity 
support, followed by an analysis of what participants created and 
how they used the system without researcher intervention. 

Creativity Support. ImaginateAR received an average Creativ-
ity Support Index (CSI) score of 68.8 (SD = 18.0). CSI scores can be 
mapped to educational grading scales [23], and since our study was 
conducted in the UK, this corresponds to an ‘Upper Second-class 
Honours’—the second-highest classification [52]. Participants rated 
Results Worth Effort (M = 2.65, SD = 1.50) and Exploration (M = 
2.50, SD = 1.24) as the most important factors in AR authoring. 
On a 1–10 scale, ImaginateAR scored 6.65 (SD = 2.22) for Results 
Worth Effort and 6.36 (SD = 2.17) for Exploration. The highest-rated 
aspects of the system were Enjoyment (M = 7.71, SD = 1.65) and Ex-
pressiveness (M = 7.55, SD = 2.24). These results suggest participants 
valued the ability to explore and achieve meaningful outcomes— 
well-supported by ImaginateAR—while also finding the experience 
engaging and expressive. See Figure 10. 

Participant Creations. All participants successfully authored 
at least one AR scene. See Figure 11 for all 24 creations. These 
ranged from “a sphinx and a pyramid rising from the ground” (P6) 
to “a cat chasing a row of yellow ducks” (P16) and “animals drinking 
coffee while watching a spaceship launch” (P19). Some built whimsi-
cal scenes for general audiences (7/20), while others designed for 
friends (5/20) or family (3/20). A few explored more story-driven 
experiences (4/20). Regardless of intent, 14 out of 20 participants 
explicitly mentioned having fun while using ImaginateAR. The va-
riety of creations suggests that ImaginateAR effectively supported 
a wide range of authoring goals, demonstrating both flexibility and 
robustness in real-world use. 

Figure 10: Left: Average number of times each CSI factor [23] 
was selected as more important than another. Participants 
rated Results Worth Effort and Exploration as most impor-
tant, with Immersion rated significantly lower than all other 
factors. Right: The scores participants gave ImaginateAR by 
factor. Participants found ImaginateAR enjoyable and ex-
pressive, but not necessarily immersive. 

Authoring Strategies with ImaginateAR. Most participants 
(18/20) preferred a mix of AI and manual tools. Typically, they 
began with AI-assisted mode to create a “blueprint layout” (P5), 
followed by “manually tuning the scene as needed” (P6). AI features 
were praised for enhancing creativity (20/20), flexibility (16/20), and 

expressiveness (3/20), though some found them “too creative” (P5), 
leading to unexpected or undesired results (7/20). Others noted 
subpar asset quality (7/20) and slow generation times (3/20). 

Manual tools were valued for their control, precision, and sense 
of ownership (19/20), as well as ease-of-use (7/20). However, manual 
editing was also seen as time-consuming and laborious (12/20), re-
quiring “physically moving and pressing many buttons” (P15). Some 
participants found selecting models from a preset list creatively 
limiting (4/20), while others struggled with tapping accuracy in 
busy environments due to “fat finger” issues (3/20). 

Two participants diverged from this hybrid workflow: P2 skipped 
manual mode entirely, describing AI outputs as “fun and creative, 
even when inaccurate” and arrangements “correct enough”. P19 
avoided AI tools altogether due to slow generation times. Yet when 
asked how they would ideally use ImaginateAR once AI and manual 
modes improved, all 20 participants indicated they would prefer a 
mix of both. As P4 put it: “AI helped me be more creative and quickly 
place objects. But even when it was right, I still wanted to tweak things 
manually. It felt more rewarding when I had the final say.” 

Similar to Part 1, participants preferred the freedom to use AI and 
manual tools as needed. For brainstorming, however, participants 
relied solely on the AI agent. Eleven found it helpful, particularly 
when stuck or unsure what to create next. They especially appreci-
ated how the agent suggested ideas aligned with their environment 
or theme. P20, for instance, began with a vague Sci-Fi idea and 
found the AI helpful in “refining my idea into something more spe-
cific and creative”, which led to creating an alien and a robot. Still, 
several participants (7/20) wished the agent could do more—holding 
a back-and-forth conversation (5/20), asking clarifying questions 
(4/20), and eventually generating an entire scene once the idea 
was fully formed (6/20). As P7 reflected, “The AI adds flexibility, 
but also demands that you know exactly what you want and how to 
describe it,” pointing to the potential for more collaborative, guided 
brainstorming and authoring workflows. 

7.3 Brainstorming Future of ImaginateAR 
In Part 3, participants shared ideas for improving ImaginateAR and 
envisioned how they might use it in the future. Below, we synthesize 
limitations they identified and their proposed enhancements. 

AI Creativity. While participants agreed the AI was generally 
more creative than they were, they differed on whether that cre-
ativity was actually beneficial. 13 participants appreciated the AI’s 
inventive and surprising results—P2 remarked, “It gave me a hu-
manoid lion and a two-headed giraffe... I love the randomness of it. 
I’m just excited to see what it will create next!” Others found the 
AI “too creative” (P5), generating content that clashed with their 
intent. For instance, P5 requested a fountain and received a pink 
one—possibly because previous objects they had generated were 
pink—when they had envisioned a typical stone fountain: “Creativ-
ity can be a double-edged sword.” P1 also raised concerns that an 
unmoderated AI could produce inaccurate or even inappropriate 
content, especially for children. 

To manage AI creativity, participants proposed several ideas. P14 
wanted the AI to clarify ambiguous requests through follow-up 
questions, rather than making assumptions: “If I ask for a creature 
but don’t specify the color, the AI should ask, ‘do you want it yellow, 
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Figure 11: AR experiences created by participants (N𝑝𝑖𝑙𝑜𝑡 =4; N𝑠𝑡𝑢𝑑 𝑦 =20) while interacting with the full ImaginateAR prototype 
in Part 2. Users were encouraged to create freely without limitations. ‘PP’ denotes pilot participants and ‘P’ study participants. 
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purple, or something else?’ We should talk back and forth until both of 
us are ready to build something.” P18 suggested a “creativity slider” 
for more granular control over AI outputs. Participants also appre-
ciated being able to choose from multiple AI-generated options, 
helping them “ignore results that don’t fit” (P8). 

Creating Dynamic AR Scenes. Many participants wanted their 
scenes to feel alive and reactive, not just static. They suggested 
adding animations (8/20), music (5/20), and event triggers (3/20). 
For example, P5 wanted a water fountain with flowing water, P17 
imagined dogs running in circles, and P20 envisioned horror scenes 
with eerie sounds: “That would make it more realistic, especially if 
the rendering quality is more like a cartoon.” Additionally, P8 hoped 
virtual creatures could respond to touch (e.g., a dog smiling when 
petted), while P14 suggested NPC-like interactions where virtual 
humans or animals could talk or bark back in a conversational 
manner. Still, P18 felt the current features “cover the basics needed 
to create a simple AR scene,” but hoped future improvements would 
focus on AI generation quality and speed. 

Sharing Creations. 11 participants expressed interest in sharing 
their AR creations. Some preferred sharing photos or videos (P9, 
P12, P16), while others (P6, P7, P20) wanted to distribute full AR 
scenes for others to download and experience. P5, P7, and P19 
proposed a searchable catalog of AI-generated models with user 
ratings: “If I had a catalog, I could just type in ‘pink dolphin’ and 
see what others have used. That would drive inspiration and save 
me time” (P5). P7 added that ratings could help users assess model 
quality before choosing. To further personalize shared assets, P3, 
P6, and P16 suggested allowing users to customize elements like 
color. Finally, P1 emphasized that public sharing could help enforce 
content safety and appropriateness. 

AI Explainability. Nine participants wanted clearer explana-
tions from the AI about its progress and actions. Currently im-
plemented messages like “Understanding Your Surroundings” and 
“Creating 3D Models” were seen as too vague. As P4 explained, “In-
stead of just ‘thinking’ or ‘processing,’ a more detailed explanation of 
what’s been done would be nice, just so I know the AI heard me right, 
how much longer I have to wait, and what it will eventually do to 
my environment.” Participants also wanted better feedback during 
AI processing to know whether they could continue interacting, 
such as looking around or making manual changes. That said, P18 
cautioned against overloading users with information, suggesting 
that even a brief log would help: “Long messages will go unread. Just 
tell me what the AI heard and what it’s doing.” 

Access Barriers. Participants also raised accessibility concerns 
regarding speech input. P14 and P18 noted misrecognition of non-
standard accents (e.g., “bowl” interpreted as “ball”), while P5 high-
lighted issues for users with speech impairments or in noisy en-
vironments: “If kids are screaming in the background, it might be 
easier not to speak out loud.” While speech input was chosen for its 
naturalness, participants emphasized the importance of offering 
alternatives to ensure broader accessibility. 

Envisioning Future Use Cases. When asked where and how 
they might use ImaginateAR in the future, participants proposed 
a wide range of scenarios. Popular ideas included designing mini 
or board games (P9, P13, P14, P15) and transforming mundane 
environments—such as turning lecture halls into botanical gardens 
or adding a beach to an office (P5, P7, P8). Some envisioned practical 

uses like visualizing furniture layouts (P2, P17) or using AR pets for 
stress relief (P1, P3). Others imagined playful experiences, such as 
hiding AR Easter eggs for friends (P4, P11) or creating immersive 
horror games (P7, P20). P10 even envisioned placing themselves 
inside the scene: “I want to wear a crown, sit on a throne in the middle 
of a desert, and be surrounded by flowers.” Overall, participants were 
excited to use ImaginateAR anywhere—from their homes (P2, P5) 
to parks (P5) and outdoor landmarks (P19). 

8 Discussion 
ImaginateAR combines outdoor scene understanding, fast 3D asset 
generation, and LLM-driven speech interactions to advance AI-
assisted AR authoring. Our study revealed that users often began 
with AI to generate a creative scene blueprint, then refined it manu-
ally for greater control—enabling diverse, accurate, and expressive 
creations. Here, we provide suggestions for AI-assisted AR author-
ing tool designs, discuss the broader implications of AI creativity 
and assistance, and outline limitations and future directions. 

8.1 Design Implications for AR Authoring Tools 
Throughout the study, participants indicated preferences for AI use 
and proposed a wide range of improvements and future features 
for ImaginateAR. We summarize and expand on these suggestions. 

What Role Should AI Play in AR Authoring Workflows? 
Our key takeaway is that users expect a blend of AI-assisted and 
manual tools when authoring AR environments—they want to 
co-create with AI, not just rely on it. While AI offers creativity 
and expressivity, manual tools provide the control needed to fine-
tune scenes and feel ownership over the result. All but two partici-
pants combined both during free-form authoring: they reviewed 
AI-generated blueprints, then refined one to better match their cre-
ative intent. AI sped up early prototyping, helping users bring ideas 
to life with less active input and decision-making, while manual 
adjustments enabled greater precision and reduced frustration by 
offering a way to correct AI errors. We recommend that future 
iterations of ImaginateAR continue supporting hybrid workflows, 
consistent with human-AI design guidelines [5, 42]. Ultimately, 
users seek outcomes that justify their effort—AR scenes that best 
reflect their imagination—which often requires both the creative 
freedom of generative AI and the precision of manual control. 

How Much AI Creativity is Too Much? AI’s creativity can be 
a double-edged sword—both engaging and frustrating. Some partic-
ipants enjoyed the AI’s playful interpretations—like P2’s whimsi-
cal two-headed giraffe—while others felt such outputs strayed too 
far from their intent. This tension suggests ImaginateAR should 
avoid extremes: being too rigid, where the AI follows only literal 
instructions, or too free, where it produces imaginative but irrele-
vant content. Following the Human-Centered Artificial Intelligence 
(HCAI) framework [94], we recommend giving users ways to adjust 
AI creativity (e.g., a “creativity slider” akin to an LLM’s temperature 
setting) while supporting rapid iteration so users stay in control. 

What Might Future AR Authoring Look Like? Our find-
ings point to a future AR authoring workflow where users and AI 
co-create through iterative conversation, refining ideas together 
until both “agree” on what to build. Once aligned, the system could 
generate a full scene blueprint. For example, a user might say, “Turn 
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(A) “Place a pink fountain 
on the ground” (P5) 

(B) “A helicopter 
hovering the shed” (P14) 

(C) “A giant T-Rex 
walking on grass” (P14) 

Accurate AI output 

(D) “Create a pyramid on 
the grass field” (P6) 

(E) “A mouse being 
chased by a bird” (P11) 

(F) “Add a carrot on the 
snowman” (P13) 

Inaccurate AI output 

Figure 12: Examples of accurate and inaccurate AI-generated scene blueprints before any manual input. (A–C) show scenes that 
align with user intent across object type, placement, and orientation, though users may have made later edits. (D–F) illustrate 
common issues: clipped geometry (D), incorrect facing direction (E), and imprecise part-level placement (F). 

this playground into a coral reef ”, imagining an experience where 
kids can explore and learn about marine life. The AI might suggest 
creative details like, “Let’s add a surgeonfish and a parrotfish, since 
they’re commonly found in coral reefs”, or ask clarifying questions 
such as, “What color corals would you like?” rather than making as-
sumptions. This kind of dialogue lets users guide the creative direc-
tion without needing to specify every object or detail—alleviating 
the burden of constant input and decision-making. The same work-
flow can extend beyond 3D assets to include music (e.g., sea breeze), 
animations (e.g., fish flapping their fins), and event triggers (e.g., 
picking up corals that break). Once both parties feel ready, AI 
agents can build the scene. To support this, AR authoring tools 
need scene understanding to position, rotate, and scale multiple 
objects appropriately—reducing the user’s workload of arranging 
each asset manually. Users could then make quick manual edits to 
fine-tune the result, and ideally, share it with others. While Imagi-
nateAR already supports conversational brainstorming, real-time 
full-scene generation remains limited by current technology: even 
our fast asset generation pipeline takes 20–30 seconds per model, 
making scene-level creation too slow for interactive use. This vision 
also aligns with prior work like LLMR’s Planner agent [26], which 
also supports collaborative scene ideation—but primarily targets 
VR and still struggles to generate complete scenes efficiently. How-
ever, as generative models continue to improve, conversational AR 
authoring at scale may soon be possible. 

8.2 Challenges in AI-powered AR Authoring 
This work contributes to both HCI and computer vision by integrat-
ing outdoor scene understanding and fast 3D asset generation into 
a simple, speech-driven system for AI-assisted AR authoring. How-
ever, our study revealed limitations that impacted user experience. 
For example, scene understanding sometimes lacked granularity, 
leading to visual misalignments, while asset generation, though 
significantly faster than prior work, still required around half a 

minute—affecting perceived usability. Below, we reflect on key tech-
nical challenges. We also dig deeper into CV–specific challenges in 
Sections 1–3 of the Supplementary Materials, including depth map 
enhancement, scene understanding, and 3D asset generation. 

Scene Understanding Accuracy and Granularity. We rep-
resent real-world objects as 3D bounding boxes to keep the scene 
graph compact and make spatial reasoning easier for LLMs. How-
ever, this abstraction can limit precision in AI-generated scene 
blueprints. For example, a sloped ground in our study environment 
was enclosed in a tall bounding box. When users asked for virtual 
objects to be placed on this surface, aligning to the bounding box’s 
maximum y-value caused them to float near the bottom of the 
slope, while using the minimum y-value led to clipping near the 
top. Placement on irregular, multi-part shapes like the pig statue 
in Figure 7A was also challenging. A hat worked reasonably well 
by aligning its base to the statue’s bounding box top, but clothing— 
intended for the body—was harder to position due to the lack of 
part segmentation. Even with the hat, minor misalignments oc-
curred because the statue’s ears extended above its head, meaning 
the maximum y-value did not match the intended placement point. 
Figure 12 illustrates scenes created solely by AI, including both 
successful and unsuccessful examples. While 3D bounding boxes 
offer an efficient abstraction, future work should explore richer 
representations to support more precise interactions—such as di-
rectly leveraging depth maps [27] or point clouds [111]—though 
these formats are less readily compatible with LLM-based pipelines 
compared to textual scene graphs. 

Speed and Quality of Asset Generation. In-situ AR author-
ing demands fast, high-quality 3D mesh creation. Although our 
pipeline generated assets faster than prior work with minimal sac-
rifice of quality, participants still found the 30 second wait dis-
ruptive. Asset quality was also occasionally lacking: some mod-
els were flat (princess in Figure 7B), incomplete (knight missing 
legs in Figure 7B), had holes (castle in Figure 7B), or lacked de-
tail (Mayan person in Figure 7C). Interestingly, some errors were 
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viewed positively—P2 described a two-headed giraffe as “fun and 
exciting”—but overall, more reliable asset quality is needed. At the 
time of development, we used InstantMesh [117], then state-of-the-
art, but more capable models like LATTE3D [116], TRELLIS [115], 
and Hunyuan3D [124] are emerging. Since ImaginateAR is modular, 
these can be easily integrated. 

Beyond Static Scenes. While ImaginateAR supports AR author-
ing across a wide range of static outdoor scenes, dynamic content 
remains an open challenge. Our scene understanding pipeline relies 
on pre-scans to reduce user burden and enable more complete spa-
tial understanding. We use scene graphs for their compact, textual 
structure that LLMs can reason over—but they do not reflect real-
time changes, such as a moved bench or a person walking through 
the scene. As a result, while we can place a hat on a statue, we can-
not place it on a moving person. Authoring truly dynamic scenes 
would also require richer support for animation, sound, and interac-
tivity. Audio could be integrated using generative models [98] (e.g., 
AudioLDM [61], MusicLM [4]), and triggered events could build on 
prior systems that generate code [20, 26, 31]. Animation, however, 
is particularly challenging: most prior work uses simple scripted 
motions [20, 26, 31] or assumes pre-rigged assets [44], which is 
incompatible with our use of generated 3D models. Auto-rigging 
remains unreliable, and low-quality animation risks breaking im-
mersion. Therefore, we chose to study animation needs in AR au-
thoring qualitatively (e.g., P5: “flowing water”). Future work should 
explore how to incorporate dynamic changes and behaviors into 
AR authoring [97] to further enhance creative flexibility. 

System Latency. Latency remains a core challenge for in-
situ AR systems—users expect responsiveness and may find even 
sub-minute delays disruptive, especially outdoors. While Imagi-
nateAR achieves significantly faster runtimes than prior systems 
(i.e., 33.92 ± 5.83 seconds), current speeds can still interrupt the 
flow of in-situ authoring. Because true real-time performance re-
mains difficult to achieve, future tools should offer meaningful 
feedback (e.g., progress indicators, estimated wait times) and sup-
port multitasking—such as manually editing objects while waiting 
for AI responses. As generative models improve, latency will likely 
decrease, though offloading to remote servers may remain neces-
sary given the limited computational power of today’s AR devices. 

8.3 Limitations & Future Directions 
This work has several limitations. First, we did not support multi-
user co-creation. Several participants expressed interest in sharing 
or building scenes together, suggesting opportunities to study col-
laborative AR authoring [74]. Second, our user study was limited to 
a single location. While our technical evaluation shows that Imagi-
nateAR can generalize to diverse outdoor settings, future studies 
should explore a broader range of environments (and perhaps with 
other demographics, such as children). Third, while ImaginateAR 
currently runs on phones, future work could explore deploying 
it on AR headsets, which may enable new interactions but also 
raise challenges around social acceptability and physical comfort 
during extended public use. Fourth, as discussed earlier, improving 
scene understanding, asset quality, system latency, and support 
for dynamic scene authoring remains important. Future scene un-
derstanding pipelines should also be evaluated on larger outdoor 

datasets. Finally, although ImaginateAR depends on precomputed 
scene graphs, participants did not perform scanning themselves. 
While the system is designed to scale with existing large-scale point 
cloud datasets, future work could examine how users scan scenes 
and how systems might better support that process [108]. 

9 Conclusion 
We present ImaginateAR, a novel system that advances AI-assisted 
AR authoring through outdoor scene understanding, fast 3D asset 
generation, and LLM-driven speech interactions. Our technical eval-
uation and user study show that users can create diverse AR scenes 
in different real-world settings. Challenges remain—including im-
proving scene understanding granularity, asset quality, latency, and 
collaborative AI support—but this work takes a step toward making 
personalized AR authoring as simple as speaking your imagination. 
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